1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
15

The vector position of an object is given by r what is the torque acting on the object about the origin when a force f = (−12.5i

hat) n acts on it? express your answer using unit vector notation.

Physics
1 answer:
attashe74 [19]3 years ago
7 0
Let the vector position of the object in the (x-y) plane be 
\vec{r} = x \hat{i} + y \hat{j}

The applied force is
\vec{f} = -12.5 \hat{i}


By definition, the applied torque is
\vec{T} = \vec{r} \times \vec{f} = (x\hat{i} + y\hat{j}) \times (-12.5y \hat{i}) = 12.5\hat{k}

Answer: 12.5y \, \hat{k}

You might be interested in
A metabolic waste of algae that can be recycled for use in cellular respiration is
m_a_m_a [10]

Answer:oxygen

Explanation:algae are plants that lives in aquatic habitat,with a few of them occurring in land. Algae have chlorophyll and as a result are autotrophic in nutrition. Algae uses carbon dioxide as a raw material for photosynthesis which is the process where they produce food. They also give off oxygen which results from the splitting of water by light.

This oxygen given off is used by organisms for cellular respiration.the mitochondria is the organelle responsible it's utilization in respiration and carbon dioxide is given off.oxygen serves as an electron acceptor in the energy producing process in the mitochondria. It is an important gas for aerobic respiration.

5 0
3 years ago
What is an example of a invertebrate that doesn’t have an exoskeleton?
Tatiana [17]

<em><u>Invertebrat</u></em><em><u>e</u></em><em><u> </u></em><em><u>means</u></em><em><u> </u></em><em><u>those</u></em><em><u> </u></em><em><u>organism</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>doesnot</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>backbone</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>their</u></em><em><u> </u></em><em><u>body</u></em><em><u> </u></em><em><u>.</u></em><em><u>Some</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>t</u></em><em><u>he</u></em><em><u> </u></em><em><u>examples</u></em><em><u> </u></em><em><u>are</u></em><em><u>:</u></em>

<em><u>1</u></em><em><u>.</u></em><em><u>S</u></em><em><u>p</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u>r</u></em>

<em><u>2</u></em><em><u>.</u></em><em><u>e</u></em><em><u>a</u></em><em><u>r</u></em><em><u>t</u></em><em><u>h</u></em><em><u>w</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em>

<em><u>3</u></em><em><u>.</u></em><em><u>S</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>f</u></em><em><u>i</u></em><em><u>s</u></em><em><u>h</u></em>

<em><u>4</u></em><em><u>.</u></em><em><u>S</u></em><em><u>e</u></em><em><u>a</u></em><em><u> </u></em><em><u>urchins</u></em><em><u>.</u></em>

<em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>lot</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

5 0
3 years ago
Read 2 more answers
Find the equivalent resistance, current, and voltage across each resistor when the specified resistors are connected across a 20
timama [110]

Answer:

Explanation:

The question is incomplete. Here is the complete question.

"Find the equivalent resistance, the current supplied by the battery and the current through each resistor when the specified resistors are connected across a 20-V battery. Part (a) uses two resistors with resistance values that can be set with the animation sliders, and you can use the animation to verify your calculation. In part (b), three resistors are specified. (a) Two resistors are connected in series across a 20-V battery. Let R1 = 1 Ω and R2 = 2 Ω. Rea = (b) Add a third resistor to the circuit in series. Let R1 = 1 Ω, R2 = 2 Ω, and R3 = 3 Ω"

Using ohms law formula to solve the problem

E = IRt

E is the supply voltage

I is the total current

Rt is the total equivalent resistant.

a) Given two resistances

R1 = 1ohms and R2 = 2ohms

If the resistors are Connected in series across a 20V supply voltage,

-Equivalent resistance = R1+R2

= 1ohms + 2ohms

= 3ohms

- In a series connected circuit, same current flows through the resistors.

Using the formula E = IRt

I = E/Rt

I = 20/3

I = 6.67A

The current in both resistors is 6.67A

- Different voltage flows across a series connected circuit.

Using the formula V = IR

V is the voltage across each resistor

I is the current in each resistor

For 1ohms resistor,

V = 6.67×1

V = 6.67Volts

For 2ohms resistor

V = 6.67×2

V = 13.34Volts

b) If the resistors are three

R1 = 1ohms, R2 = 2ohms R3 = 3ohms

- Total equivalent resistance = 1+2+3

= 6ohms

- Current in each resistor I = E/Rt

I = 20/6

I = 3.33A

Since the same current flows through the resistors, the current across each of them is 3.33A

- Voltage across them is calculated as shown:

V = IR

For 1ohm resistor

V = 3.33×1

V = 3.33volts

For 2ohms resistor

V = 3.33×2

V = 6.66volts

For 3ohms resistor

V = 3.33×3

V = 9.99volts

3 0
3 years ago
Read 2 more answers
Can anyone help me with 11 and 12 please
dexar [7]
The 1st one is basically B because it will stay in motion with the same speed and in the same direction unless acted on by an unbalanced force and the 2cd one is A because most of is transformed into thermos energy. hope this helps!
7 0
3 years ago
A tennis player swings her 1000 g racket with a speed of 11 m/s. She hits a 60 g tennis ball that was approaching her at a speed
shusha [124]

Answer:

- 3.72 Ns.

9.44 m/s

Explanation:

mass of racket, M = 1000 g = 1 kg

mass of ball, m = 60 g = 0.06 kg

initial velocity of racket, U = 11 m/s

initial velocity of ball, u = 18 m/s

final velocity of ball, v = - 44 m/s

Let the final velocity of the racket is V.

(a) Momentum is defined as the product of mass and velocity of the ball.

initial momentum of the ball = m x u = 0.06 x 18 = 1.08 Ns

Final momentum of the ball = m x v = 0.06 x (- 44) = - 2.64 Ns

Change in momentum of the ball = final momentum - initial momentum

                                                        = - 2.64 - 1.08 = - 3.72 Ns

Thus, the change in momentum of the ball is - 3.72 Ns.

(b) By use of conservation of momentum

initial momentum of racket and ball = final momentum of racket and ball

1 x 11 + 0.06 x 18 =  1 x V - 0.06 x 44

12.08 = V - 2.64

V = 9.44 m/s

Thus, the final velocity of the racket afetr the impact is 9.44 m/s .

3 0
3 years ago
Other questions:
  • If we want to see our full image then the minimum size of the plane mirror:
    13·1 answer
  • VITI<br> How many electrons are in the third energy level?
    8·1 answer
  • How do the weights of the tug of war teams affect the match
    6·2 answers
  • A strand of 10 lights is plugged into an outlet. How can you determine if the lights are connected in series or paralle
    7·1 answer
  • What kind of proof is required when disproving old ideas?
    9·1 answer
  • A 0.299 kg mass slides on a frictionless floor with a speed of 1.44 m/s. The mass strikes and compresses a spring with a force c
    6·1 answer
  • A bicycle wheel with radius 0.3 m rotates from rest to 3 rev/s in 5 s. What is the magnitude and direction of the total accelera
    5·1 answer
  • Which of the following is most likely to happen when energy is transferred to
    10·2 answers
  • An average force of 328 N acts for a time interval of 0.05s on a golf ball
    9·1 answer
  • what were the negative results with the american television from analog broadcast to digital broadcast?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!