Answer:

Explanation:
Hello there!
In this case, when considering weak acids which have an associated percent dissociation, we first need to set up the ionization reaction and the equilibrium expression:
![HA\rightleftharpoons H^++A^-\\\\Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=HA%5Crightleftharpoons%20H%5E%2B%2BA%5E-%5C%5C%5C%5CKa%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Now, by introducing x as the reaction extent which also represents the concentration of both H+ and A-, we have:
![Ka=\frac{x^2}{[HA]_0-x} =10^{-4.74}=1.82x10^{-5}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7Bx%5E2%7D%7B%5BHA%5D_0-x%7D%20%3D10%5E%7B-4.74%7D%3D1.82x10%5E%7B-5%7D)
Thus, it is possible to find x given the pH as shown below:

So that we can calculate the initial concentration of the acid:
![\frac{(1.82x10^{-5})^2}{[HA]_0-1.82x10^{-5}} =1.82x10^{-5}\\\\\frac{1.82x10^{-5}}{[HA]_0-1.82x10^{-5}} =1\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B%281.82x10%5E%7B-5%7D%29%5E2%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1.82x10%5E%7B-5%7D%5C%5C%5C%5C%5Cfrac%7B1.82x10%5E%7B-5%7D%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1%5C%5C%5C%5C)
![[HA]_0=3.64x10^{-5}M](https://tex.z-dn.net/?f=%5BHA%5D_0%3D3.64x10%5E%7B-5%7DM)
Therefore, the percent dissociation turns out to be:
![\% diss=\frac{x}{[HA]_0}*100\% \\\\\% diss=\frac{1.82x10^{-5}M}{3.64x10^{-5}M}*100\% \\\\\% diss = 50\%](https://tex.z-dn.net/?f=%5C%25%20diss%3D%5Cfrac%7Bx%7D%7B%5BHA%5D_0%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%3D%5Cfrac%7B1.82x10%5E%7B-5%7DM%7D%7B3.64x10%5E%7B-5%7DM%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%20%3D%2050%5C%25)
Best regards!
Number of moles = 5.7 moles of oxygen.
<u>Explanation:</u>
We have to convert number of molecules into number of moles by dividing the number of molecules by Avogadro's number.
Here number of molecules of oxygen given is 34.1 × 10²³ molecules.
Now we have to divide the number of molecules by Avogadro's number as,
Number of moles = 
= 
= 5.7 moles
So here molecules is converted into moles.
Answer:
The statements are definitions to chromatography terms which have been highlighted below.
Explanation:
Match the chromatography term with its definition.
Volumetric Flow Rate = The volume of solvent traveling through the column per unit time.
Retention time = The elapsed time between sample injection and detection.
Adjusted Retention Time = The time required by a retained solute to travel through the column beyond the time required by the un -retained solvent.
Linear Flow Rate = The distance traveled by the solvent per unit time.
Retention factor = Describes the amount of time that a sample spends in the stationary phase relative to the mobile phase. It is sometimes also called the capacity factor or capacity ratio.
Relative Volume = Volume of the mobile phase required to elute a solute from the column.
Relative Retention = Ratio of the adjusted retention times or retention factors of two solutes. It is sometimes also called the separation factor.
Partition coefficient = The ratio of the solute concentrations in the mobile and stationary phases.
Answer:
A. Thermal enerfy and light
Explanation:
1) A. the have different protons.
The number of protons is the atomic number and this is how the products are ordered in the periodic table. Every element has different atomic number.
2) A. 8 p, 8 e and 8 n
The atomic number of O is 8, which means it has 8 protons. The number of protons must equal the number of electrons.
3) C. atoms bond with one another in a molecule.
That is what a molecule is: a group ot atoms bonded.
4) D. the bond results from the attractive forces of two opposite charges.
Ionic bonds are formed between ions, a positive ion (cation) and a negative ion (anion).
5) A. the physical and chemical properties of HCl are different from those of H2 and Cl2
You can check physical properties (density for example) and chemical properties (how they react with other elements) in some tables o textbooks.