Answer:
Formation of new elements
Explanation:
<h3><u>Effects of the earths orbit around the sun:</u></h3>
The earth moves around the sun in an elliptical orbit, Johannes Kepler, a "German mathematician, and astronomer" described this elliptical orbit first. The orbit is close to being a circle but not a circle. Earth orbiting the sun mainly effects on seasons on earth.
Earth's four seasons are determined when Earth is tilted 23.4 degrees on the vertical axis, which is called as “axial tilt”. When a "southern hemisphere is tilted towards the sun", it experiences summer and northern hemisphere experiences winter, exactly opposite happens when northern hemisphere tilts towards Sun and this climate change goes on in all countries.
Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
21.75 Miles Per Hour
I got this by multiplying 7.25(3) because I know 20 minutes is 1/3 of 1 he
Answer:
θ = Cos⁻¹[A.B/|A||B|]
A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result
Explanation:
We can use the formula of the dot product, in order to find the angle between two non-zero vectors. The formula of dot product between two non-zero vectors is written a follows:
A.B = |A||B| Cosθ
where,
A = 1st Non-Zero Vector
B = 2nd Non-Zero Vector
|A| = Magnitude of Vector A
|B| = Magnitude of Vector B
θ = Angle between vector A and B
Therefore,
Cos θ = A.B/|A||B|
<u>θ = Cos⁻¹[A.B/|A||B|]</u>
Hence, the correct answer will be:
<u>A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result</u>