Answer:
Austrian physicist Erwin Schrödinger was a noted theoretical physicist and scholar who came up with a groundbreaking wave equation for electron movements. He was awarded the 1933 Nobel Prize in Physics, along with British physicist P.A.M
Water and sodium oxide have different properties because of their nature as explained below.
<h3><u>Explanation:</u></h3>
Sodium oxide is a oxide of metallic sodium, while water is an oxide of hydrogen. So sodium oxide is a metallic oxide, while water is a non metallic oxide. Sodium oxide is a basic oxide, while water is neutral. As state of matter is concerned, sodium oxide is solid in normal room temperature, while water is liquid in normal room temperature. Water is a polar covalent molecule with partial charges on oxygen, but sodium oxide is an ionic molecule.
So all these factors contribute to very different properties of both sodium oxide and water.
The right answer for the question that is being asked and shown above is that: "<span>b. number/timed." Reaction Rate refers to the </span> speed of reaction<span> for a reactant or product in a particular </span>reaction<span> is intuitively defined as how fast or slow a</span>re action<span> takes place.</span>
Answer:
ΔH⁰(11.4g NH₄NO₃) = -30.59Kj (4 sig. figs. ~mass of NH₄NO₃(s) given) (exothermic)
Explanation:
3NH₄NO₃(s) + C₁₀H₂₂(l) + 14O₂(g) => 3N₂(g) + 17H₂O(g) + 10CO₂(g)
ΔH⁰(f): 3(-365.6)Kj 1(-301)Kj 14(0)Kj 3(0)Kj 17(-241.8)Kj 10(-393.5)Kj
= -1096.8Kj = -301Kj = 0Kj = 0Kj = -4110.6Kj = -3930.5Kj
ΔHₙ°(rxn) = ∑
(ΔH˚(f)products) - ∑(ΔH˚(f)reactants)
= [3(0)Kj + 17(-241.8)Kj + (-393.5)Kj] - [(-(1096.8)Kj + (-301)Kj + (0)Kj]
= [-(8041.1) - (-1397.8)]Kj
= -6643.3Kj (for 3 moles NH₄NO₃ used in above equation)
∴ Standard Heat of Rxn = -6643.3Kj/3moles = -214.8Kj/mole NH₄NO₃(s)
ΔH°(rxn for 14.11g NH₄NO₃(s)) = (11.4g/80.04g·mol⁻¹)(-214.8Kj/mol) = 30.5937Kj ≅ 30.59Kj (4 sig. figs. ~mass of NH₄NO₃(s) given)
The correct answer for the question that is being presented above is this one: "C. planetesimals ® heavier elements ® inner planets ® protoplanets" The list of the stages of development of the inner planets is this <span>C. planetesimals ® heavier elements ® inner planets ® protoplanets</span>