The arrows that represent the phase transitions in which heat energy is gained is : (A). 1, 2 and 3
<h3>Meaning of phase transitions</h3>
Phase transitions can be defined as the changing of matter from one form to another due to the addition or gaining of heat or due to the removal or loss of heat.
Phase transitions in matter are majorly between three phases which are: Solid, Liquid and Gas.
In conclusion, The arrows that represent the phase transitions in which heat energy is gained is : (A). 1, 2 and 3
Learn more about Phase transitions: brainly.com/question/11048831
#SPJ1
Answer: Boron is the element which has properties of both metals and nonmetals.
Explanation:
Metals are defined as the elements which loose electrons to attain stable electronic configuration. They attain positive charge and form cation. Example: Zinc (Zn), Aluminium (Al) , copper (Cu)
Non-metals are defined as the elements which gain electrons to attain stable electronic configuration. They attain negative charge and form anion. Example: Chlorine (Cl) , Sulphur (S)
Metalloids are defined as the elements which show properties of both metals and non-metals. There are 7 metalloids in the periodic table. They are Boron (B) , Silicon (Si) , Germanium (Ge) , Arsenic (As) , Antimony (Sb), Tellurium (Te) and Polonium (Po).
Thus boron is the element which has properties of both metals and nonmetals.
Answer:
ΔH rxn = -1010 kJ/molC₂H₂
Explanation:
To obtain the enthalpy change for a reaction from bond energies what we do is to make an inventory of the bonds broken and formed for the balanced chemical reaction:
C₂H₂ + 5/2O₂ ⇒ 2CO₂ + H₂O
Bond Broken Bonds Formed
2 C-H + 1 C≡C + 5/2 O=O 4C=O + 2 H-O
Enthalpy bonds broken:
2 mol (456 kJ/mol)+ 1 mol (962 kJ/mol) + 5/2 mol (499 kJ/mol) = 3121.5 kJ
Enthalpy bond formed:
4 mol (802 kJ/mol) + 2 mol (462 kJ/mol) = 4132.0 kJ
ΔH rxn = H broken - H formed = 3121.5 kJ - 4132.0 kJ = - 1010 kJ (per mol C₂H₂ )
The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1
Answer:

Explanation:
Hello!
In this case, since the ideal gas equation is used under the assumption of no interaction between molecules and perfectly sphere-shaped molecules but the van der Waals equation actually includes those effects, we can compute each pressure as shown below, considering the temperature in kelvins (22.3+273.15=295.45K):

Next, since the VdW equation requires the molar volume, we proceed as shown below:

Now, we use its definition:

Thus, by plugging in we obtain:

Thus, the pressure difference is:

Best regards!