Answer:
0.0319 m³
Explanation:
Use ideal gas law:
PV = nRT
where P is pressure, V is volume, n is amount of gas, R is the gas constant, and T is temperature.
Since P, n, and R are held constant:
n₁ R / P₁ = n₂ R₂ / P₂
Which means:
V₁ / T₁ = V₂ / T₂
Plugging in:
0.0279 m³ / 280 K = V / 320 K
V = 0.0319 m³
In almost every case in nature, adding heat to a liquid
causes the density of the liquid to decrease. That is,
when the liquid gets warmer, it expands and occupies
more space.
The one big exception to this rule is water !
Starting with a block of ice at zero°C (32°F), as the ice melts,
becomes water at zero°C, and all the way to 4°C (about 39°F),
its density increases all the way. That is, it shrinks and occupies
less volume as it goes from ice at zero°C to water at 4°C.
This sounds like an interesting but insignificant quirk ... until
you realize that if water didn't do this, then life on Earth would
be impossible !
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

Answer: Homogenous mixture.
Explanation:
Answer:
Distance: 21 yd, displacement: 15 yd, gain in the play: 12 yd
Explanation:
The distance travelled by Sam is just the sum of the length of each part of Sam's motion, regardless of the direction. Initially, Sam run from the 3 yd line to the 15 yd line, so (15-3)=12 yd. Then, he run also 9 yd to the right. Therefore, the total distance is
d = 12 + 9 = 21 yd
The displacement instead is a vector connecting the starting point with the final point of the motion. Sam run first 12 yd straight ahead and then 9 yd to the right; these two motions are perpendicular to each other, so we can find the displacement simply by using Pythagorean's theorem:

Finally, the yards gained by Sam in the play are simply given by the distance covered along the forward-backward direction only. Since Sam only run from the 3 yd line to the 15 yd line along this direction, then the gain in this play was
d = 15 - 3 = 12 yd