Answer: radon (atomic mass 222 amu
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
atomic mass of krypton= 83.8 amu
atomic mass of argon= 39.95 amu
atomic mass of xenon = 131.3 amu
atomic mass of radon= 222 amu
Thus as atomic mass of radon is highest, its rate of diffusion is slowest.
Answer:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object
Explanation:
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>
Answer:
1. Number of gas particles (atoms or molecules)
2. Number of moles of gas
3. Average kinetic energy
Explanation:
Since the two gas has the same volume and are under the same conditions of temperature and pressure,
Then:
1. They have the same number of mole because 1 mole of any gas at stp occupies 22.4L. Now both gas will occupy the same volume because they have the same number of mole
2. Since they have the same number of mole, then they both contain the same number of molecules as explained by Avogadro's hypothesis which states that at the same temperature and pressure, 1 mole of any substance contains 6.02x10^23 molecules or atoms.
3. Being under the same conditions of temperature and pressure, they both have the same average kinetic energy. The kinetic energy of gas is directly proportional to the temperature. Now that both gas are under same temperature, their average kinetic energy are the same.