Due to the law of conservation of mass, _g K + 16g O=94g KO.
So, 94-16=78
78 is your answer
This depends in what type reaction is occurring. It may be an endothermic reaction or an exothermic reaction. If the reaction is endothermic or heat is being absorbed by the reaction, then the forward reaction is favored or the products are being formed by the addition of heat. If the reaction is exothermic or heat is released by the reaction, then the backward reaction is favored or the reactants are being formed by the addition of heat.
Answer:
transfer pipet that had markings every 0.1 mL.
Explanation:
They expect the Universe to continue expanding. Right now, the evidence is that the expansion is speeding up. They also expect entropy to continue increasing, so in the distant future, there will not be any free energy left to support life, for example.
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.