Answer:
A C
Explanation:
The statement of the exercise is a bit strange, but if the distance between the load increases.
The following phenomena must occur.
* If the charge has a spatial distribution, the electric field should reduce the electric field of a point charge at the same distance
* As the distance increases the value of the electric field decreases in quadratic form
therefore when reviewing the correct answers are
if the total load is q, answer A is correct
and answer C is always correc
Answer:

The Magnitude of electric field is in the upward direction as shown directly towards the charge
.
Explanation:
Given:
- side of a square,

- charge on one corner of the square,

- charge on the remaining 3 corners of the square,

<u>Distance of the center from each corners</u>


∴Distance of center from corners, 
Now, electric field due to charges is given as:

<u>For charge
we have the field lines emerging out of the charge since it is positively charged:</u>

<u>Force by each of the charges at the remaining corners:</u>

<u> Now, net electric field in the vertical direction:</u>


<u>Now, net electric field in the horizontal direction:</u>


So the Magnitude of electric field is in the upward direction as shown directly towards the charge
.
Answer:
It is important to note, that the 2nd Law of thermodynamics plays no fundamental role in answering this question; we need a heat sink because the entropy is a state function, and at the end of the reversible process (which is visualized through the Carnot cycle diagram relevant for this problem), the entropy value of the system must return to the value it had originally.
The formula for gravitational potential energy is Ep= mgh. Lets convert 594 km into m: 594 x 1,000 = 594,000 m. So we do: Ep= (1,800kg)(9.8N/kg)(594,000m) = (17,640N)(594,000) = 10,478,160,000 J.
Answer:
The electromagnetic spectrum in order of increasing frequency is - radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
The frequency of the gamma rays is >3×10
19
m.
Hence, the gamma rays has the maximum frequency in the electromagnetic spectrum.