Answer:
The kinetic theory of gases describes a gas as a large number of submicroscopic particles, all of which are in constant, rapid, random motion. The randomness arises from the particles' many collisions with each other and with the walls of the container
Explanation:
Answer:
10.60 grams of silane gas are formed.
Explanation:
From the reaction:
Mg₂Si(s) + 4H₂O(l) → 2Mg(OH)₂(aq) + SiH₄(g)
We know that the limiting reactant is Mg₂Si, so to find the mass of SiH₄ formed we need to calculate the number of moles of Mg₂Si:

Where:
m: is the mass of Mg₂Si = 25.0 g
M: is the molar mass of Mg₂Si = 76.69 g/mol

Now, the stoichiometric relation between Mg₂Si and SiH₄ is 1:1 so:

Finally, the mass of SiH₄ is:

Therefore, 10.60 grams of silane gas are formed.
I hope it helps you!
Answer:
i think there would be 5!
Explanation:
brainliest pls and God bless you!!:)
The one that has a higher entropy for the reaction is products.
<h3>What is entropy?</h3>
Entropy is a measureable physical characteristic and a scientific notion that is frequently connected to a condition of disorder, unpredictability, or uncertainty. It is the measurement of the amount of thermal energy per unit of temperature in a system that cannot be used for productive work. It is a measure of a system's molecular disorder or unpredictability since work is produced by organized molecular motion.
It should bm be noted that the entropy of gas is more than entropy of aqueous which is more than the entropy of liquid and the entropy of solid.
On the product side there are more gas than the reactant side. Therefore, product has more entropy.
Learn more about entropy on:
brainly.com/question/6364271
#SPJ1
Answer:
<em>no</em><em> </em>
Explanation:
our heart muscles never get tired, because it has to pump blood in our body 72 times a minute, it is made of special cardiac muscles which helps it to perform it's function without getting tired ....
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>