Answer: sorry I’m not sure
Odjri:
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
Answer:
The correct answer is B. It is spontaneous only at low temperatures.
Explanation:
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure.
The spontaneity of a reaction is given by the equation:
ΔG = ΔH - TΔS
where:
ΔH: enthalpy variation
T: absolute temperature
ΔS: entropy variation
As the reaction is exothermic, ΔH<0
As the reaction order increases (the reagents are solid and gas and their product is solid), ΔS<0
Therefore, the reaction will be spontaneous when ΔG is negative.
ΔG = ΔH - TΔS
That is, the entropy term must be smaller than the enthalpy term.
Hence, the reaction will be spontaneous only at low temperatures.
Answer:
An element is to a compound as an organ is to tissue
Explanation:
<span>3.68 liters
First, determine the number of moles of butane you have. Start with the atomic weights of the involved elements:
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Atomic weight oxygen = 15.999
Molar mass butane = 4*12.0107 + 10*1.00794 = 58.1222 g/mol
Moles butane = 2.20 g / 58.1222 g/mol = 0.037851286
Looking at the balanced equation for the reaction which is
2 C4H10(g)+13 O2(g)→8 CO2(g)+10 H2O(l)
It indicates that for every 2 moles of butane used, 8 moles of carbon dioxide is produced. Simplified, for each mole of butane, 4 moles of CO2 are produced. So let's calculate how many moles of CO2 we have:
0.037851286 mol * 4 = 0.151405143 mol
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant ( 0.082057338 L*atm/(K*mol) )
T = absolute temperature (23C + 273.15K = 296.15K)
So let's solve the formula for V and the calculate using known values:
PV = nRT
V = nRT/P
V = (0.151405143 mol) (0.082057338 L*atm/(K*mol))(296.15K)/(1 atm)
V = (3.679338871 L*atm)/(1 atm)
V = 3.679338871 L
So the volume of CO2 produced will occupy 3.68 liters.</span>