Answer:
half-life, in radioactivity, the interval of time required for one-half of the atomic nuclei of a radioactive sample to decay (change spontaneously into other nuclear species by emitting particles and energy), or, equivalently, the time interval required for the number of disintegrations per second of a radioactive ...
Explanation:
braniest
Answer:
2 litres of pure alcohol will be added to make the overall concentration of 9 litres of mixture as 30%.
Explanation:
Suppose x is the number of litres added to the 10% mixture than the quantity of new mixture is given as below
litres
litres
Also the quantity of alcohol is given as
Now the equation is as

So 2 litres of pure alcohol will be added to make the overall concentration of 9 litres of mixture as 30%.
Direction and speed. Hope it helps
Answer:- 0.273 kg
Solution:- A double replacement reaction takes place. The balanced equation is:

We have 0.29 L of 22% m/v aluminum nitrate solution. m/s stands for mass by volume. 22% m/v aluminium nitrate solution means 22 g of it are present in 100 mL solution. With this information, we can calculate the grams of aluminum nitrate present in 0.29 L.

= 63.8 g aluminum nitrate
From balanced equation, there is 1:3 mol ratio between aluminum nitrate and sodium chlorate. We will convert grams of aluminum nitrate to moles and then on multiplying it by mol ratio we get the moles of sodium chlorate that could further be converted to grams.
We need molar masses for the calculations, Molar mass of sodium chlorate is 106.44 gram per mole and molar mass of aluminum nitrate is 212.99 gram per mole.

= 
sodium chlorate solution is 35% m/m. This means 35 g of sodium chlorate are present in 100 g solution. From here, we can calculate the mass of the solution that will contain 95.7 g of sodium chlorate and then the grams are converted to kg.

= 0.273 kg
So, 0.273 kg of 35% m/m sodium chlorate solution are required.
Answer:
<em>the </em><em>two </em><em>elements</em><em> </em><em>are </em><em>in </em><em>the</em><em> same</em><em> </em><em>period</em><em>,</em><em> with</em><em> </em><em>element </em><em>R </em><em>the </em><em>first</em><em> </em><em>element</em><em> </em><em>in </em><em>the</em><em> </em><em>period</em><em> </em><em>and </em><em>element </em><em>Q </em><em>the </em><em>last</em><em> </em><em>element</em>