Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
The bond order of a diatomic element with six bonding electrons, six non-bonding electrons, and 2 anti-bonding electrons is 2 whose formula is( bonding electrons-anti bonding electrons)/2.
<h3>What is an element?</h3>
An element is defined as a substance which cannot be broken down further into any other substance. Each element is made up of its own type of atom. Due to this reason all elements are different from one another.
Elements can be classified as metals and non-metals. Metals are shiny and conduct electricity and are all solids at room temperature except mercury. Non-metals do not conduct electricity and are mostly gases at room temperature except carbon and sulfur.
The number of protons in the nucleus is the defining property of an element and is related to the atomic number.All atoms with same atomic number are atoms of same element.
Learn more about element,here:
brainly.com/question/14347616
#SPJ2
In Thomson's experiment, he showed that an electrical current can be made to flow from a positive site to a negative site.
Answer: 37.6 atm
Explanation:
Given that,
Initial volume of gas (V1) = 19L
Initial pressure of gas (P1) = 9.5 atm
Final volume of gas (V2) = 4.8L
Final pressure of gas (P2) = ?
Since pressure and volume are given while temperature remains the same, apply the formula for Boyle's law
P1V1 = P2V2
9.5 atm x 19L = P2 x 4.8L
180.5 atm•L = 4.8L•P2
Divide both sides by 4.8L
180.5 atm•L/4.8L = 4.8L•P2/4.8L
37.6 atm = P2
Thus, the final pressure is 37.6 atmospheres.