The substances largely ionic are:
NF3
N2
BrF3
PCl3
Answer:
Mg²⁵ = 10.00%
Mg²⁶ = 45.04%
Mg²⁴ = 44.96%
Explanation:
Given data:
Atomic mass of Mg²⁶ = 25.983
Atomic mass of Mg²⁵ = 24.986
Atomic mass of Mg²⁴ = 23.985
Abundance of Mg²⁵ = 10.00%
Abundance of Mg²⁶ = ?
Abundance of Mg²⁴ = ?
Solution:
Average atomic weight of Mg = 25.983 + 24.986+ 23.985 / 3
Average atomic weight of Mg = 74.954/3
Average atomic weight of Mg = 24.985 amu
Abundance of
Mg²⁵ = 10.00
Mg²⁶ = x
Mg²⁴ = 100- 10 - x = 90 -x
Formula:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) + (abundance of 3rd isotope × its atomic mass) / 100
24.985 = (0.1×24.986)+(90-x×23.985) + ( x ×25.983 ) /100
24.985 = 249.86 + 2158.65 - 23.985x + 25.983x / 100
24.985 = 2408.51 + 1.998 x / 100
2498.5 = 2408.51 + 1.998 x
1.998 x = 2498.5 - 2408.51
1.998 x = 89.99
x = 89.99 /1.998
x = 45.04
Now we put the value of x:
Mg²⁵ = 10.00
Mg²⁶ = x (45.04)
Mg²⁴ = 90 -x (90 - 45.04 = 44.96)
Alcoholic fermentation is mainly used by various yeast species to make energy.
If there is no oxygen available, the yeasts have in the alcoholic fermentation another possibility of energy supply. But they can - as compared with cellular respiration - recover substantially less energy from glucose, in the form of adenosine triphosphate (ATP): by complete oxidation, a molecule of glucose provides 36 molecules of ATP, but by alcoholic fermentation only 2 molecules of ATP. These two molecules are obtained in glycolysis, the first step in the chain of reactions for both cellular respiration and fermentation.
The two additional steps of the fermentation, and thus the production of ethanol serve not to make energy, but the regeneration of the NAD + cofactor used by the enzymes of glycolysis. As NAD + is available in limited quantities, it is converted by the NADH reduced state fermentation enzymes to the NAD + oxidized state by reduction of acetaldehyde to ethanol.
All particles (atoms and molecules) of matter have kinetic energy because they are always in motion.
A measure of the kinetic energy of particle motion within a substance is temperature. If the particles move faster, they have more kinetic energy, and the substance has a higher temperature
Answer:
With less energy at higher trophic levels, there are usually fewer organisms as well
Explanation: Organisms tend to be larger in size at higher trophic levels, but their smaller numbers result in less biomass. Biomass is the total mass of organisms at a trophic level.