The correct answer is: [C]:
___________________________________________________________
"<span>pressure and the number of gas molecules are directly related."
___________________________________________________________
<u>Note</u>: The conclusion was: "</span> as the pressure in a system increases, the number of gas molecules increases" — over the course of many trials.
This means that the "pressure" and the "number of gas molecules" are directly related.
Furthermore, this conclusion is consistent with the "ideal gas law" equation:
" PV = nRT " ;
____________________________________________________________
in which:
"P = Pressure" ;
"n = number of gas molecules" ;
___________________________________________________________
All other factors held equal, when "n" (the "number of gas molecules")
increases in value (on the "right-hand side" of the equation), the value for "P" (the "pressure" — on the "left-hand side" of the equation), increases.
___________________________________________________________
the solid particles take up the intermolecular spaces in the liquid.
A=P +N
A=13+14
A=27 this the answer
Hey there :)
We can see that the solubility of salt increases with increasing temperature. This happens with most substances.
To find out the maximum mass of copper sulfate that can be dissolved in water at these temperatures, just interpret the graph.
Considering Y-axis as g copper sulfate/100 g water and the X-axis as the temperature in °C:-
<u>1)</u>
a: <u>0 °C - 14 g of copper sulfate/100 g of water</u>
b: <u>50 °C - 34 g of copper sulfate/100 g of water</u>
c: <u>90 °C - 66 g of copper sulfate/100 g of </u><u>water</u>
<u>2)</u> From the graph, we can infer that temperature affects the solubility of the salt.
<em>Answered</em><em> </em><em>by</em><em> </em><em>Benjemin360</em><em> </em>:)