Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I


Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!
Answer:
The smallest part of a millimeter that can be read with a digital caliper with a four digit display is 0.02mm. Thus, it has to be converted to centimetre. So, divide by 10, we then have 0.02/10= *0.002cm* not mm.
Answer:
Part a)

Part b)
North of East
Explanation:
Speed of train towards East = 60 km/h
displacement towards East is given as

now it turns towards 50 degree East of North
so its distance is given as


then finally it moves towards west for 50 min

Now the total displacement of the train is given as



now total time duration of the motion is given as


now average velocity is given as


Part a)
magnitude of the average velocity is given as



Part b)
Direction of the velocity is given as


North of East
You forgot to add a photo.
It’s c, the toy car changes direction