The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

Through the aforementioned formula we will have to

The particulate part of the rest, so the final speed would be



Now from Newton's second law we know that

Here,
m = mass
a = acceleration, which can also be written as a function of velocity and time, then

Replacing we have that,


Therefore the force that the water exert on the man is 1386.62
Answer:
total distance = 1868.478 m
Explanation:
given data
accelerate = 1.68 m/s²
time = 14.2 s
constant time = 68 s
speed = 3.70 m/s²
to find out
total distance
solution
we know train start at rest so final velocity will be after 14 .2 s is
velocity final = acceleration × time ..............1
final velocity = 1.68 × 14.2
final velocity = 23.856 m/s²
and for stop train we need time that is
final velocity = u + at
23.856 = 0 + 3.70(t)
t = 6.44 s
and
distance = ut + 1/2 × at² ...........2
here u is initial velocity and t is time for 14.2 sec
distance 1 = 0 + 1/2 × 1.68 (14.2)²
distance 1 = 169.37 m
and
distance for 68 sec
distance 2= final velocity × time
distance 2= 23.856 × 68
distance 2 = 1622.208 m
and
distance for 6.44 sec
distance 3 = ut + 1/2 × at²
distance 3 = 23.856(6.44) - 0.5 (3.70) (6.44)²
distance 3 = 76.90 m
so
total distance = distance 1 + distance 2 + distance 3
total distance = 169.37 + 1622.208 + 76.90
total distance = 1868.478 m
You could certainly have some good easy going carefree conversation with your sister or your cousin at dinner or at a movie, but relative dating is not an effective way to get serious and find a life partner.