Explanation:
i think C . it is twice the size of the object
Answer:
Explanation:
Length if the bar is 1m=100cm
The tip of the bar serves as fulcrum
A force of 20N (upward) is applied at the tip of the other end. Then, the force is 100cm from the fulcrum
The crate lid is 2cm from the fulcrum, let the force (downward) acting on the crate be F.
Using moment
Sum of the moments of all forces about any point in the plane must be zero.
Let take moment about the fulcrum
100×20-F×2=0
2000-2F=0
2F=2000
Then, F=1000N
The force acting in the crate lid is 1000N
Option D is correct
Answer:
iv) It is 9x bigger than before
Explanation:
As the amplitudes of the new speakers add directly with the original one, taking into account the phase that they have, the composed amplitude of the sound wave is as follows:
At = A + 4A -2A = 3 A
The intensity of the wave, assuming it propagates evenly in all directions, is constant at a given distance from the source, and can be expressed as follows:
I = P/A
where P= Power of the wave source, A= Area (for a point source, is equal to the surface area of a sphere of radius r, where is r is the distance to the source along a straight line)
For a sinusoidal wave, the power is proportional to the square of the amplitude, so the intensity is proportional to the square of the amplitude also.
If the amplitude changes increasing three times, the change in intensity will be proportional to the square of the change in amplitude, i.e., it will be 9 times bigger.
So, the statement iv) is the right one.
Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Answer:
a) p=0, b) p=0, c) p= ∞
Explanation:
In quantum mechanics the moment operator is given by
p = - i h’ d φ / dx
h’= h / 2π
We apply this equation to the given wave functions
a) φ =
.d φ dx = i k
We replace
p = h’ k
i i = -1
The exponential is a sine and cosine function, so its measured value is zero, so the average moment is zero
p = 0
b) φ = cos kx
p = h’ k sen kx
The average sine function is zero,
p = 0
c) φ =
d φ / dx = -a 2x
.p = i a g ’2x
The average moment is
p = (p₂ + p₁) / 2
p = i a h ’(-∞ + ∞)
p = ∞