Answer : The temperature when the water and pan reach thermal equilibrium short time later is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of aluminium = 
= specific heat of water = 
= mass of aluminum = 0.500 kg = 500 g
= mass of water = 0.250 kg = 250 g
= final temperature of mixture = ?
= initial temperature of aluminum = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the temperature when the water and pan reach thermal equilibrium short time later is, 
<span>The velocity will be 41.25 m/s2 after 9 seconds. To find velocity after a specific time period, multiply the acceleration (2.75) times the number of seconds (9) to receive 24.75 m/s, then add that to the initial velocity of 16.5 m/s. 24.75 + 16.5 = 41.25 m/s2.</span>
Sample Response: No image will be formed because the rays will not converge to or diverge from a common point.
<h2>
Horizontal component of the rock’s velocity when it strikes the ground is 17.25 m/s</h2>
Explanation:
In horizontal direction there is no acceleration or deceleration for a rock projected at an initial angle of 37° off the ground.
So the horizontal component of velocity always remains the same.
Horizontal component of velocity is the cosine component of velocity.
Initial velocity, u = 21.6 m/s
Angle, θ = 37°
Horizontal component of velocity = u cosθ
Horizontal component of velocity = 21.6 cos37
Horizontal component of velocity = 17.25 m/s
Since the horizontal velocity is unaffected, we have
Horizontal component of the rock’s velocity when it strikes the ground = 17.25 m/s