1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
3 years ago
15

The escape velocity is defined to be the minimum speed with which an object of mass m must move to escape from the gravitational

attraction of a much larger body, such as a planet of total mass M. The escape velocity is a function of the distance of the object from the center of the planetR, but unless otherwise specified this distance is taken to be the radius of the planet because it addresses the question "How fast does my rocket have to go to escape from the surface of the planet?" What is the total mechanical energy Etotal of the object at a very large (i.e., infinite) distance from the planet? Find the escape velocity ve for an object of mass m that is initially at a distance R from the center of a planet of mass M. Assume that R≥Rplanet, the radius of the planet, and ignore air resistance. Express the escape velocity in terms of R, M, m, andG, the universal gravitational constant.
Physics
1 answer:
s344n2d4d5 [400]3 years ago
6 0

Answer:

v = √2G M_{earth} / R

Explanation:

For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)

        Eo = K + U = ½ m1 v² - G m1 m2 / r1

        Ef = - G m1 m2 / r2

When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf

       Eo = Ef

       ½ m1v² - G m1 M_{earth} / R = - G m1 M_{earth} / R

      v² = 2G M_{earth} (1 / R - 1 / Rinf)

If we do Rinf = infinity     1 / Rinf = 0

       v = √2G M_{earth} / R

      Ef = = - G m1 m2 / R

The mechanical energy is conserved  

 

      Em = -G m1  M_{earth} / R

      Em = - G m1  M_{earth} / R

     R = int        ⇒  Em = 0

You might be interested in
A 1350 kg uniform boom is supported by a cable. The length of the boom is l. The cable is connected 1/4 the
olchik [2.2K]

Answer:

Tension= 21,900N

Components of Normal force

Fnx= 17900N

Fny= 22700N

FN= 28900N

Explanation:

Tension in the cable is calculated by:

Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium

FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)

Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)

Ftorque= 2/3FBcostheta+ 4/3FWcostheta

Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°

Ftorque= 21900N

b) components of Normal force

Efx=FNx-FTcos(90-theta)=0 static equilibrium

Fnx=21900cos(90-55)=17900N

Fy=FNy+ FTsin(90-theta)-FB-FW=0

FNy= -FTsin(90-55)+FB+FW

FNy= -21900sin(35)+(1350+2250)×9.81=22700N

The Normal force

FN=sqrt(17900^2+22700^2)

FN= 28.900N

4 0
4 years ago
Halleys comet has period of 75.3 years. Using Kepler’s third law, find it’s semimajor axis expressed in astronomical units?
natta225 [31]

Answer: 17.83 AU

Explanation:

According to Kepler’s Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.  </em>

T^{2}\propto a^{3}  (1)

Talking in general, this law states a relation between the <u>orbital period</u> T of a body (moon, planet, satellite, comet) orbiting a greater body in space with the <u>size</u> a of its orbit.

However, if T is measured in <u>years</u>, and a is measured in <u>astronomical units</u> (equivalent to the distance between the Sun and the Earth: 1AU=1.5(10)^{8}km), equation (1) becomes:

T^{2}=a^{3}  (2)

This means that now both sides of the equation are equal.

Knowing T=75.3years and isolating a from (2):

a=\sqrt[3]{T^{2}}=T^{2/3}  (3)

a=(75.3years)^{2/3}  (4)

Finally:

a=17.83AU  (5)

4 0
3 years ago
The bodies in this universe attract one another name the scientist who propounded this statement​
Colt1911 [192]
<h2><em>Answer: According to wikipedia Sir Isaac Newton has told this statement.</em></h2><h2><em>hope its helps you.</em></h2><h2><em>have a great day.</em></h2><h2><em> keep smiling be happy stay safe.  </em></h2><h2><em /></h2>

<em />

7 0
3 years ago
Anyone.... help with this two questions...​
PSYCHO15rus [73]

Answer:

what is the question

]

Explanation:

w

7 0
3 years ago
Read 2 more answers
Which velocity-time graph matches the position-time graph?
skelet666 [1.2K]

The answer is Graph C. To explain, this is because as we look at the position vs time graph, we see that after the first second, it was 30 meters from the start. That would mean that it took 1 second to get to 30 meters. That is shown in Graph c

7 0
3 years ago
Read 2 more answers
Other questions:
  • A speedboat travels from the dock to the first buoy, a distance of 20 meters, in 18 seconds. It began the trip at a speed of o m
    12·2 answers
  • An airplane flies with a constant speed of 780 miles per hour. How far can it travel in 4 hours?
    9·2 answers
  • Gravity pulls downward on a rock with a force of 800 N. If you pull upward on the rock with a force of 400 N, what is the total
    7·2 answers
  • You attach a 1.90 kg mass to a horizontal spring that is fixed at one end. You pull the mass until the spring is stretched by 0.
    15·1 answer
  • How much work does the electric field do in moving a proton from a point with a potential of +130 V
    9·1 answer
  • The hottest climates on Earth are located near the Equator because this region
    11·1 answer
  • WRONG ANSWERS WILL BE REPORTED
    10·1 answer
  • If hydrogen and helium are the most abundant elements in the unoverse , then why are living organisms composed primarily of carb
    10·1 answer
  • The diagram shows two charged objects, X and Y.
    15·2 answers
  • Select all the correct answers.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!