The total power emitted by an object via radiation is:

where:
A is the surface of the object (in our problem,


is the emissivity of the object (in our problem,

)

is the Stefan-Boltzmann constant
T is the absolute temperature of the object, which in our case is

Substituting these values, we find the power emitted by radiation:

So, the correct answer is D.
Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.
Vf = Vo + at
Vf = 20 m/s
Vo = 50 m/s
a = ?
t = 15
Therefore
20 = 50 + 15a
20 - 50 = 15a
-30 = 15a
a = -30 / 15
a = -2 m/s²
The ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
<h3 /><h3>What is the photoelectric effect?</h3>
When a medium receives electromagnetic radiation, electrostatically charged particles are emitted from or inside it.
The emission of ions from a steel plate when light falls on it is a common definition of the effect. The substance could be a solid, liquid, or gas; and the released particles could be protons or electrons.
A particular metal emits photoelectrons when exposed to light with energy three times its work function:

The ratio of the maximum photoelectron kinetic energy to the work function will be;

Hence, the ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
To learn more about the photoelectric effect refer to the link;
brainly.com/question/9260704
#SPJ1
Troposphere is the answer