If the object is in equilibrium that means that the sum of the forces on it is zero and the net force is zero. If none of the forces changes then the object continues in constant uniform motion. That means constant speed in a straight line.
Answer:
D = 18000 kg/m3
V = 2.5*10{-7}m3
Explanation:
From the Archimedes principle,
Weight of fluid displaced = W_{air} - W_{water}
W_{air} = 4.5 gm
W_{water} = 4.25 gm
![W = [4.5 - 4.25]*9.81*10^{-3}](https://tex.z-dn.net/?f=W%20%3D%20%5B4.5%20-%204.25%5D%2A9.81%2A10%5E%7B-3%7D)
W = 2.4525*10{-3} N



D = 18000 kg/m3
b) object Volume can be obtained as ,

V = 2.5*10{-7}m3
Answer:
9.2 V
Explanation:
The RMS value of an AC is the effective value of a varying voltage or current in DC, that is the equivalent value of the AC which produces the same effect as an DC. For example if a motor is supplied by a 9V RMS voltage, it will rotate as if the voltage applied was 9V DC.
The RMS value is given by:
RMS voltage = Peak voltage * 1/√2
Given that the maximum voltage should not exceed 13 V, this means that the peak voltage is 13 V. The maximum RMS voltage is:
RMS voltage = Peak voltage * 1/√2 = 13 * 1/√2 = 9.2 V
Answer:


Explanation:
The period of the comet is the time it takes to do a complete orbit:
T=1951-(-563)=2514 years
writen in seconds:

Since the eccentricity is greater than 0 but lower than 1 you can know that the trajectory is an ellipse.
Therefore, if the mass of the sun is aprox. 1.99e30 kg, and you assume it to be much larger than the mass of the comet, you can use Kepler's law of periods to calculate the semimajor axis:
![T^2=\frac{4\pi^2}{Gm_{sun}}a^3\\ a=\sqrt[3]{\frac{Gm_{sun}T^2}{4\pi^2} } \\a=1.50*10^{6}m](https://tex.z-dn.net/?f=T%5E2%3D%5Cfrac%7B4%5Cpi%5E2%7D%7BGm_%7Bsun%7D%7Da%5E3%5C%5C%20a%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGm_%7Bsun%7DT%5E2%7D%7B4%5Cpi%5E2%7D%20%7D%20%5C%5Ca%3D1.50%2A10%5E%7B6%7Dm)
Then, using the law of orbits, you can calculate the greatest distance from the sun, which is called aphelion:

Answer:
The Doppler shift may be helpful to determine the relative speed of an object by bouncing a wave (usually a radar wave) off the object and measuring the shift in the frequency of the wave.
Explanation:
Doppler shift helps to overcome a visual illusion block out irrelevant noises, locate sounds and see an object in very dim light by determining the relative speed of an object by bouncing a wave