It is in the noble gas group which has a full valence electron shell found in group 18
The first one is Force & the second one Power.
the weight of the balloon is .030 * 10 = 0.3 N
the weight of the gas of volume v is 0.54*10 N
The lifting force of a volume of v m³ of displaced air is 1.29v N
so, we need
1.29*10*v = 0.3 + 0.54*10*v
or
1.29v = 0.03+0.54v
Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
Energy slowly leaks outward through the radiative diffusion of photons that repeatedly bounce off ions and electrons.
<h3>What is radiative diffusion?</h3>
A radiation zone is a layer of a star's core where energy is mostly carried toward the outside by radiative diffusion and thermal conduction rather than convection.
As photons, energy passes through the radiation zone as electromagnetic radiation.
The radiative diffusion of photons that repeatedly bounce off ions and electrons progressively drains energy outward.
Hence,radiative diffusion is correct answer.
To learn more about radiative diffusion refer:
brainly.com/question/3598352
#SPJ4