The solution for the problem is:
Constant speed means Fnet = 0.
Let m = mass of wood block and Θ = angle of ramp; then if µk = 0.35 …
The computation would be:
Fnet = 0 = mg (sin Θ) - (µk) (mg) (cos Θ)
mg (sin Θ) = µk (mg) (cos Θ)
µk = tan Θ
Θ = arctan(µk)
= arctan (0.35)
≈ 19.3°
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Answer:

Explanation:
From the question we are told that:
Mass 
Deviation 
Time 
Generally the equation for moment of inertia is mathematically given by



Answer:
Gravity,momentum & friction are examples of FORCE.
Explanation:
Hope this helps you
Do mark me as brainliest
The number of cans that would be considered lethal if 10g was lethal and there where 12oz in a can is 419 cans.
<h3>How to convert mass?</h3>
According to this question, caffeine concentration is 1.99 mg/oz.
1.99 milligrams can be converted to grams as follows:
1.99milligrams ÷ 1000 = 0.00199grams
This means that 0.00199grams per oz is the caffeine concentration.
If there were 12 oz in a can, then, 0.00199grams × 12 = 0.02388 grams in 1 can.
This means that if 10grams is considered lethal, 10grams ÷ 0.02388 grams = 419 cans would be lethal for consumption.
Therefore, the number of cans that would be considered lethal if 10g was lethal and there where 12oz in a can is 419 cans.
Learn more about conversion factor at: brainly.com/question/14479308
#SPJ1