<span>increase while moving left to right within a period and increase while moving upward within a group. </span>
<span>The molten material then spreads out, pushing the older rock to both sides of the ridge. As the molten material cools, it forms a strip of solid rock in the center of the ridge. Then more molten material flows into the crack. The material splits apart the strip of solid rock that formed before, pushing it aside. Hope this helps! (:</span>
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
Answer:
Group 4A (or IVA) of the periodic table includes the nonmetal carbon (C), the metalloids silicon (Si) and germanium (Ge), the metals tin (Sn) and lead (Pb), and the yet-unnamed artificially-produced element ununquadium (Uuq).
The Group 4A elements have four valence electrons in their highest-energy orbitals (ns2np2). Carbon and silicon can form ionic compounds by gaining four electrons, forming the carbide anion (C4-) and silicide anion (Si4-), but they more frequently form compounds through covalent bonding. Tin and lead can lose either their outermost p electrons to form 2+ charges (Sn2+, the stannous ion, and Pb2+, the plumbous ion) or their outermost s and p electrons to form 4+ charges (Sn4+, the stannic ion, and Pb4+, the plumbic ion).
Carbon (C, Z=6).
Carbon is most familiar as a black solid is graphite, coal, and charcoal, or as the hard, crystalline diamond form. The name is derived from the Latin word for charcoal, carbo. It is found in the Earth's crust at a concentration of 480 ppm, making it the 15th most abundant element. It is found in form of calcium carbonate, CaCO3, in minerals such as limestone, marble, and dolomite (a mixture of calcium and
Explanation:
<em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>A</u></em><em><u>L</u></em><em><u>L</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>K</u></em><em><u>N</u></em><em><u>O</u></em><em><u>W</u></em>
<u>E</u><u>N</u><u>J</u><u>O</u><u>Y</u><u> </u><u>THE</u><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em>
The answer would be A. Genotype