Answer:
7. ∠CBD = 100°
8. ∠CBD = ∠BCE = 100°; ∠CED = ∠BDE = 80°
Step-by-step explanation:
7. We presume the angles at A are congruent, so that each is 180°/9 = 20°.
Then the congruent base angles of isosceles triangle ABC will be ...
∠B = ∠C = (180° -20°)/2 = 80°
The angle of interest, ∠CBD is the supplement of ∠ABC, so is ...
∠CBD = 180° -80°
∠CBD = 100°
__
8. In the isosceles trapezoid, base angles are congruent, and angles on the same end are supplementary:
∠CBD = ∠BCE = 100°
∠CED = ∠BDE = 80°
Answer:
4th choice which is 50.24 sq.m
Answer:
-1/14
Step-by-step explanation:
67n - 58 = n - 36
hope this helps, have a great day!
Answer:

Step-by-step explanation:
<u>Equation of a circle</u>

where:
- (a, b) is the center
- r is the radius
From inspection of the diagram, the center of the circle <em>appears</em> to be at point (-3, 2), although this is not very clear. Therefore, a = -3 and b = 2.
Substitute these values into the general form of the equation of a circle:


Again, from inspection of the diagram, the <u>maximum vertical point</u> of the circle appears to be at y = 5. Therefore, to calculate the radius, subtract the y-value of the center point from the y-value of the maximum vertical point:
⇒ radius (r) = 5 - 2 = 3
Substitute the found value of r into the equation:

Therefore, the final equation of the given circle is:
