Answer:

Explanation:
Potassium nitrate is a soluble salt which readily dissolves in a polar solvent, such as water. When solid potassium nitrate is dissolved in water, it dissociates into potassium cations and nitrate anions.
Due to the resultant ionic charges, the polar water molecules attract the resultant ions and potassium nitrate ions become hydrated, that is, surrounded by water molecules.
Nitrate, our anion, attracts the partially positive ends of water molecules by attracting them via hydrogen atom.
Potassium, the cation, attracts the partially negative end of water molecules by attracting via oxygen atom.
Ions have an extra or lost an electron. Isotopes have different numbers of neutrons.
Answer:
The protonated form is predominant when aspirin is absorbed more readily. The ratio of conjugate base to acid is 1 to 100.
Explanation:
Aspirin is more readily absorbed when it is protonated, that is when pH is lower than pKa (<em>more H⁺ available in the medium</em>). We can confirm this using Henderson-Hasselbalch equation for pH = 1.5:

When aspirin is absorbed more readily the ratio of conjugate base to acid is 1 to 100, being the acid the <em>predominant</em> form.
Answer:
Dispersion forces.
Explanation:
CO2 contains dispersion forces, and covalent bonds. It is a linear molecule, and the bond angle of O-C-O is 180 degree. O is more electronegative than C, the C-O contains polar bond with the having negative end pointing towards the O.
CO contains two C-O bonds. They cancel each other out because of the dipoles point in opposite directions. Although, CO2 contains polar bonds, it is known as a nonpolar molecule. So, the only intramolecular forces which CO2 having are London dispersion forces.