Answer:
<u></u>
Explanation:
Since sulfuric acid, H₂SO₄, is a diprotic acid and potassum hydroxide, KOH, contains one OH⁻ in the formula, the number of moles of potassium hydroxide must be twice the number of moles of sulfuric acid.
<u>1. Determine the number of moles of KOH in 47mL of 0.39M potassium hydroxide solution</u>
- number of moles = molarity × volume in liters
- number of moles = 0.39M × 47mL × 1liter/1,000 mL = 0.1833mol
<u>2. Determine the number of moles of sulfuric acid needed</u>
- number of moles of H₂SO₄ = number of moles of KOH/2 = 0.1833/2 = 0.009165mol
<u>3. Determine the concentration that contains 0.009165 mol in 25mL of the acid.</u>
- Molarity = number of moles / volume in liters
- M = 0.009165mol/(25mL) × (1,000mL/liter) = 0.3666M
Round to two significant figures: 0.37M
Answer:
15.99937 is the value of this question answer
Answer:
There are 4 tryptophans in the protein.
Explanation:
According to question, protein contains one tyrosine residue and say x number of tryptophans.
Concentration of protein solution = 1.0 micromolar = 
Molar absorptivity of a protein solution : 


Length of the cuvette = l = 1.0 cm
Absorbance of protein solution at 280 nm = A = 0.024
( Beer-Lambert's law)

Solving for x :
x = 4
There are 4 tryptophans in the protein.
The average atomic mass of Sn is 118.71 g/mol
the percentage of heaviest Sn is 5.80%
the given mass of Sn is 82g
The total moles of Sn will be = mass / atomic mass = 82/118.71=0.691
Total atoms of Sn in 82g = 
the percentage of heaviest Sn is 5.80%
So the total atoms of
= 5.80% X 
Total atoms of
=
atoms
the mass of
will be = 
Answer: 5
Explanation: add up all the electrons and it will amount to 23. Arranging by the old model for electronic configuration, we have : 2, 8, 8, 5
The last number being 5 represent its valence electron