Answer:
The appropriate option will be Option A (unequal sharing of electrons in a covalent bond).
Explanation:
- A polar bond seems to be a covalent bond amongst two or even more atoms where there is an uneven distribution of the electrons surrounding the connection.
- This induces a small electrical magnetic dipole in the molecules whereby the end becomes generally favorable and another is mildly controversial.
The other choices aren't relevant to the situation presented. The answer above would be appropriate.
Answer:
The diffusion rate depends on several factors: the concentration gradient (the increase or decrease in concentration from one point to another); the amount of surface area available for diffusion; and the distance the gas particles must travel.
For the first one i know for sure its C. You normally find it as a white or white ish color
hope this helps
A would because its amplitude is higher than B's Hope this helps :D
Answer: The new pressure will be 1.42 atm
Explanation:
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the new pressure will be 1.42 atm