Answer:
Explanation:
Given parameters:
pH = 3.50
Unknown:
concentration of [H₃0⁺] = ?
concentration of [OH⁻] = ?
Solution:
In order to find the unknown, we use some simple expressions which best explains the pH scale and the equilibrium systems of aqueous solutions.
pH = -log₁₀[H₃O⁺]
[H₃O⁺] = inverse log₁₀ (-pH) =
= 
[H₃O⁺] = 3.2 x 10⁻⁴moldm⁻³
For the [OH⁻]:
we use : pOH = -log₁₀ [OH⁻]
Recall: pOH + pH = 14
pOH = 14 - pH = 14 - 3.5 = 10.5
Now we plug the value of pOH into pOH = -log₁₀ [OH⁻]
[OH⁻] = 
[OH⁻] =
= 3.2 x 10⁻¹¹moldm⁻³
The solution is acidic as the concentration of H₃0⁺ is more than that of the OH⁻ ions.
Silver has metallic bonding.
Silver is a very typical and main metal. The negatively charged electrons distribute themselves throughout the entire piece of metal and form non directional bonds between the positive silver ions, which is metallic bonding, and what silver contributes.
Answer:
The effects of supercritical CO2 (SC-CO2) on the microbiological, sensory (taste, odour, and colour), nutritional (vitamin C content), and physical (cloud, total acidity, pH, and °Brix) qualities of orange juice were studied. The CO2 treatment was performed in a 1 litre capacity double-walled reactor equipped with a magnetic stirring system. Freshly extracted orange juice was treated with supercritical CO2, pasteurised at 90°C, or left untreated. There were no significant differences in the sensory attributes and physical qualities between the CO2 treated juice and freshly extracted juice. The CO2 treated juice retained 88% of its vitamin C, while the pasteurised juice was notably different from the fresh juice and preserved only 57% of its vitamin C content. After 8 weeks of storage at 4°C, there was no microbial growth in the CO2 treated juice.
Glaciers capture large amount of carbon dioxide from atmosphere. When concentration of carbon dioxide molecules in glaciers increase, then strength and fracture toughness of ice are decreased and <span>that make glaciers vulnerable to cracking and splitting into fragments.
</span>That is because hydrogen bonds between water molecules in glaciers is decreased under increasing concentrations of carbon dioxide who <span>competes with the water molecules connected in the ice crystal.</span>