When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
The enthalpy of solution of KOH is -57.6 kJ/mol. We can calculate the heat released by the solution (Qr) of 3.66 g of KOH considering that the molar mass of KOH is 56.11 g/mol.

According to the law of conservation of energy, the sum of the heat released by the solution of KOH (Qr) and the heat absorbed by the solution (Qa) is zero.

150.0 mL of solution with a density of 1.02 g/mL were prepared. The mass (m) of the solution is:

Given the specific heat capacity of the solution (c) is 4.184 J/g・°C, we can calculate the change in the temperature (ΔT) of the solution using the following expression.

When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
Learn more: brainly.com/question/4400908
Because water is polar and oil is nonpolar, their molecules are not
attracted to each other. The molecules of a polar solvent like water are
attracted to other polar molecules, such as those of sugar. This explains
why sugar has such a high solubility in water. Ionic compounds, such
as sodium chloride, are also highly soluble in water. Because water
molecules are polar, they interact with the sodium and chloride ions.
In general, polar solvents dissolve polar solutes, and nonpolar solvents
dissolve nonpolar solutes. This concept is often expressed as “Like
dissolves like.”
So many substances dissolve in water that it is sometimes called
the universal solvent. Water is considered to be essential for life
because it can carry just about anything the body needs to take in
or needs to get rid of.
Answer:
10425 J are required
Explanation:
assuming that the water is entirely at liquid state at the beginning , the amount required is
Q= m*c*(T final - T initial)
where
m= mass of water = 25 g
T final = final temperature of water = 100°C
T initial= initial temperature of water = 0°C
c= specific heat capacities of water = 1 cal /g°C= 4.186 J/g°C ( we assume that is constant during the entire temperature range)
Q= heat required
therefore
Q= m*c*(T final - T initial)= 25 g * 4.186 J/g°C * (100°C- 0°C) = 10425 J
thus 10425 J are required
Answer:
The general form of a partition function is a sum over the states of the system,
Explanation:
qTr + qRo+ qVi +qEl= Qt
Qt= total energy
Answer:
pharynx esophagus peristalsis chyme
Explanation: