Answer:
kinetic energy
Explanation:
a certain amount of energy is transferred by the kick. The ball gains an equal amount of energy, mostly in the form of kinetic energy.
It's 12.1 m/s, assuming that's the launch velocity that's given.
For projectile motion, velocity's y-component is parabolic/quadratic. It's x-component is constant, so you don't need to know it.
Ok, so you've got to figure out a force F and you have the speed in which the boxer punches on determinate time and the mass of the sheet of paper.
So based on the formula that says that the Force is equal to the mass multiplied by the acceleration => F=ma.
You look at it and see that you only have mass which is measured on KG so there is no problem.
then you have the acceleration which is measured on meters and is defined by: a = Δv/Δt
So now you can replace the velocity and the time you have there
⇒ a 25m/s / 0.05s
you have computing that ⇒ 50m because the seconds were cancelled out.
and then you plug the meters into the force equation.
F=(0.005kg)(50)
F=0.25N
so the boxer will have a force of 0.25 Newton's.
A table would be the most appropriate because that way you can compare the data.
Nuclear energy <em>is t</em><span><em>he energy released during nuclear fission or fusion.
</em></span>