Answer:
Let d be the density of fluid.
So , Initial reading of balance, F1 =30dg N
After the level reaches 50cm^3
Final reading of balance , F2 =50dg N
Given that difference between final and initial reading is 30g
i.e, F2 −F1
=30 g
⟹50dg−30dg=30g
⟹20dg=30g
⟹d=30g/20g
⟹d=1.5g/cm^3
So, density of fluid is 1.5g/cm^3
Our sun is a medium mass star, so it wouldn't be too different from the sun's life cycle. It is born, lives for about 10 billion years and then dies. ... As a medium mass star nears the end of its life, it runs out of hydrogen which it has been fusing onto helium in its core for its whole life.
Answer:
157.8 J
Explanation:
m = mass of the cylinder = 7 kg
h = height difference in top and bottom of the incline = 2.3 m
g = acceleration due to gravity = 9.8 m/s²
TE = Total Energy at the bottom
PE = Gravitational potential energy at the top
Using conservation of energy
Total Energy at the bottom = Gravitational potential energy at the top
TE = PE
TE = m g h
TE = (7) (9.8) (2.3)
TE = 157.8 J
Answer:
Autotrophs
Explanation:
When you go down a food chain continuing to ask "what does it eat?" the last living thing that you will land upon is an autotroph.
Autotrophs are the primary producers as they (photoautotrophs) use the energy either from the sun to prepare there food by the process of photosynthesis or, more rarely, obtain chemical energy through oxidation (chemoautotrophs) to make organic substances from inorganic ones.
Autotrophs get consumed by the primary consumers in the food chain.