What is the magnitude of force required to accelerate a car of mass 1.7 × 10³ kg by 4.75 m/s²
Answer:
F = 8.075 N
Explanation:
Formula for force is;
F = ma
Where;
m is mass
a is acceleration
F = 1.7 × 10³ × 4.75
F = 8.075 N
<u>O</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>C</u><u> </u><u>i</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>
<h3 /><h3><em>S</em><em>m</em><em>a</em><em>l</em><em>l</em><em> </em><em>Explanation</em><em>:</em><em>-</em></h3>
The reactants are charcoal that is unlit + oxygen and the products are the burnt charcoal + energy.
(Explanation with formula and reason attached. Check it.)

A small 20-kg canoe is floating downriver at a speed of 2 m/s. 40 J is the canoe’s kinetic energy.
Answer: Option A
<u>Explanation:</u>
The given canoe has the mass and is being given to move at a speed. Therefore the kinetic energy of the canoe can be calculated using the following method,
Given that mass of the canoe = 20 kg and its speed =1 m/s
As we know that the Kinetic energy has the formula,

Therefore, substituting the value into the equation, we get,
= 40 J
D. Destructive interference. An easy way to think about it is the waves are opposite each other, so they essentially cancel each other out, or make an effort to.