Answer:
it would be 39.2 m/s
Explanation:
After one second, you're falling 9.8 m/s. After two seconds, you're falling 19.6 m/s, and so on.
Answer:
No. The protostellar cloud spins faster in the collapsing stage (stage 1) and becomes much slower in the contraction stage (stage 2)
Explanation:
Once the cloud is so dense that the heat which is being produced in its center cannot easily escape, pressure rapidly rises, and catches up with the weight, or whatever external force is causing the cloud to collapse, and the cloud becomes stable, as a protostellar cloud.
The protostellar cloud will become more dense over thousands of years. This stage of decreasing size is known as a contraction, rather than a collapse. In the contraction stage the cloud has become much slower, and because weight and pressure are more or less in balance. In the first stage of formation, the decrease of size is very rapid, and compressive forces completely overwhelm the pressure of the gas, and we say that the cloud is collapsing.
Answer:
V is approximately = 23m/s
Explanation:
Kinetic energy = ½ mv²
Where m= mass = 0.450kg
V= velocity =?
K. E = 119J
Therefore
K. E = ½ mv²
Input values given
119= ½ × 0.450 × v²
Multiply both sides by 2
119 ×2 = 2 × 1/2 × 0.450 × v²
238= 0.450v²
Divide both sides by 0.450
238/0.450 = 0.450v²/0.450
v² = 528.89
Square root both sides
Sq rt v² = sq rt 528.89
V = 22.998m/s
V is approximately = 23m/s
I hope this was helpful, please rate as brainliest
Answer:
0.087 m
Explanation:
Length of the rod, L = 1.5 m
Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.
time period, T = 3 s
the formula for the time period of the pendulum is given by
.... (1)
where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.
Moment of inertia of the rod about the centre of mass, Ic = mL²/12
By using the parallel axis theorem, the moment of inertia of the rod about the pivot is
I = Ic + md²

Substituting the values in equation (1)


12d² -26.84 d + 2.25 = 0


d = 2.15 m , 0.087 m
d cannot be more than L/2, so the value of d is 0.087 m.
Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.
The magnitude of the charge on the balloon is 1.6 x 10⁻¹² C.
<h3>
What is the magnitude of the charge on the ball?</h3>
The magnitude of the charge on the ball is calculated by determining the total charge equivalent to the given number of electrons.
The charge of one electron = 1.6 x 10⁻¹⁹ Coulombs
Now, we are going to estimated the total charge of 1 x 10⁷ electrons.
1 electron = 1.6 x 10⁻¹⁹ C
1 x 10⁷ electrons = ?
= (1 x 10⁷ electrons x 1.6 x 10⁻¹⁹ C) / (1 electron)
= 1.6 x 10⁻¹² C
Thus, the total charge of 1 x 10⁷ electrons is obtained by multiplying the magnitude of charge of one electron to the entire given electrons.
Learn more about charge of electron here: brainly.com/question/9317875
#SPJ1