Answer:
<h2>2 meters</h2>
Explanation:
<h2>Wavelength = Speed/Frequency </h2><h2>1000 m/s ÷ 500 hz </h2><h2>2 m</h2><h2>hz = s</h2><h2>Hopes this helps. Mark as brainlest plz!</h2>
Answer:
Total height (s) = 176.4 m
Explanation:
Given:
Initial velocity (u) = 0 m/s
Time taken (t) = 6 sec
Acceleration due to gravity = 9.8 m/s²
Find:
Total height (s)
Computation:
s = ut + [1/2]gt²
s = (0)(6) + [1/2][9.8][6²]
s = 176.4 m
Total height (s) = 176.4 m
Answer:
B. The buoyant force on the copper block is greater than the buoyant force on the lead block.
Explanation:
Given;
mass of lead block, m₁ = 200 g = 0.2 kg
mass of copper block, m₂ = 200 g = 0.2 kg
density of water, ρ = 1 g/cm³
density of lead block, ρ₁ = 11.34 g/cm³
density of copper block, ρ₂ = 8.96 g/cm³
The buoyant force on each block is calculated as;

The buoyant force of lead block;

The buoyant force of copper block

Therefore, the buoyant force on the copper block is greater than the buoyant force on the lead block
If a Ferris wheel has a 15-m radius and completes five turns about its horizontal axis every minute then the acceleration of a passenger at his lowest point during the ride is 4.11
.
Calculation:
Step-1:
It is given that the radius of the Ferris wheel is r=15 m, and the angular speed of the wheel is
=5rev/min.
It is required to find the angular acceleration of a passenger at his lowest point during the ride.
The formula required to calculate the angular acceleration is,
.
Step-2:
Now substituting the given values into the equation to get the value of the angular acceleration.

The acceleration is towards upwards that means towards the center of the wheel.
Learn more about the angular acceleration:
brainly.com/question/1592013
#SPJ4