Choices 'C' and 'D' are both correct.
(Except in 'C', changing the temperature from 1°C to 3°C is not usually
described as 'cooling', and it's not the water's 'mass' that changes. But
water does contract in volume during that change.)
Answer:
2.87 km/s
Explanation:
radius of planet, R = 1.74 x 10^6 m
Mass of planet, M = 7.35 x 10^22 kg
height, h = 2.55 x 10^6 m
G = 6.67 x 106-11 Nm^2/kg^2
Use teh formula for acceleration due to gravity


g = 1.62 m/s^2
initial velocity, u = ?, h = 2.55 x 10^6 m , final velocity, v = 0
Use third equation of motion

0 = v² - 2 x 1.62 x 2.55 x 10^6
v² = 8262000
v = 2874.37 m/s
v = 2.87 km/s
Thus, the initial speed should be 2.87 km/s.
Winds blowing across the ocean surface push water away. Water then rises up from beneath the surface to replace the water that was pushed away. This process is known as “upwelling.”
Upwelling occurs in the open ocean and along coastlines. The reverse process, called “downwelling,” also occurs when wind causes surface water to build up along a coastline and the surface water eventually sinks toward the bottom.
Water that rises to the surface as a result of upwelling is typically colder and is rich in nutrients. These nutrients “fertilize” surface waters, meaning that these surface waters often have high biological productivity. Therefore, good fishing grounds typically are found where upwelling is common.