The original concentration of the acid solution is 6.175
10^-4 mol / L.
<u>Explanation:</u>
Concentration is the ratio of solute in a solution to either solvent or total solution. It is expressed in terms of mass per unit volume
HBr + NaOH -----> NaBr + H2O
There is a 1:1 equivalence with acid and base.
Moles of NaOH = 72.90
10^-3
0.25
= 0.0182 mol.
[ HBr ] = moles of base / volume of a solution
= 0.0182 / 29.47
= 6.175
10^-4 mol / L.
<u>Ans: Acetic acid = 90.3 mM and Sodium acetate = 160 mM</u>
Given:
Acetic Acid/Sodium Acetate buffer of pH = 5.0
Let HA = acetic acid
A- = sodium acetate
Total concentration [HA] + [A-] = 250 mM ------(1)
pKa(acetic acid) = 4.75
Based on Henderson-Hasselbalch equation
pH = pKa + log[A-]/[HA]
[A-]/[HA] = 10^(pH-pKa) = 10^(5-4.75) = 10^0.25 = 1.77
[A-] = 1.77[HA] -----(2)
From (1) and (2)
[HA] + 1.77[HA] = 250 mM
[HA] = 250/2.77 = 90.25 mM
[A-] = 1.77(90.25) = 159.74 mM
Hello.
The answer i believe would be sodium.
Have a great day.
I think the correct answer would be D. The reaction that involves an acid and a covalent base would be the reaction of sulfuric acid and water or H2SO4 + 2H2O → 2H3O+ + SO42– . The acid would be H2SO4 and the covalent base would be H2O since it is being held by covalent bonds and when in solution it will have equal amounts of OH- and H+ ions.
Answer:
The mass percentage of carbon can be found easily using the molar mass of C6H12O6, 180.1559 g/mol. We need to find the mass of the glucose produced, so we multiply the number of moles of glucose by its molar mass. C6H12O6 = CO2 + C3H6O3 + CH3OCH3 Take fructose for example. Compound.
Explanation: I looked it up