1250kgm²/s is the motional kinetic energy of a 25kg object moving at a speed of 10m/s
Kinetic energy of an object is defined as the energy which is possessed when that is in motion. It is the energy of the kinetic mass of an object. Kinetic energy is never negative and is a scalar quantity. That is, it shows only size, not orientation.
Given to us
Mass of the object, m=25kg
Velocity of the object, v=10m/s
K.E=1/2x25x10²
=1250
Kinetic energy is directly proportional to the mass and velocity squared (K.E.) of an object. =1/2xMxV². If the mass is in kilograms and the velocity is in meters/second, then the kinetic energy is in kilograms - meters squared/second.
Learn ore about Kinetic energy here brainly.com/question/25959744
#SPJ9
Answer:
Please find the answer in the explanation
Explanation:
1.) How far is Object Z from the origin at t = 3 seconds
The distance of the object Z from the origin will be the slope of the graph.
Slope = 4/2 = 2m
2.) Which object takes the least time to reach a position 4 meters from the origin ?
According to the graph given to the question above, object Z has the list time which is 2 seconds since object X does not start from the origin.
3.) Which object is farthest from the origin at t = 2 seconds?
The correct answer is still object Z because it has the highest slope.
Factor out 8 and then facotr and u get
8/9(9x+1)(9x-1
Answer:
Explanation:
Potential energy is the energy stored within an object, due to the object's position, arrangement or state
Answer:
<em>20 m/s in the same direction of the bus.</em>
Explanation:
<u>Relative Motion
</u>
Objects movement is always related to some reference. If you are moving at a constant speed, all the objects moving with you seem to be at rest from your reference, but they are moving at the same speed as you by an external observer.
If we are riding on a bus at 10 m/s and throw a ball which we see moving at 10 m/s in our same direction, then an external observer (called Ophelia) will see the ball moving at our speed plus the relative speed with respect to us, that is, at 20 m/s in the same direction of the bus.