For any object to move at a constant velocity, the net force acting on the object must be ZERO.
Eight and I don’t know what else to say but for sure 8
Answer:

Explanation:
For this interesting problem, we use the definition of centripetal acceleration
a = v² / r
angular and linear velocity are related
v = w r
we substitute
a = w² r
the rectangular body rotates at an angular velocity w
We locate the points, unfortunately the diagram is not shown. In this case we have the axis of rotation in a corner, called O, in one of the adjacent corners we call it A and the opposite corner A
the distance OB = L₂
the distance AB = L₁
the sides of the rectangle
It is indicated that the acceleration in in A and B are related
we substitute the value of the acceleration
w² r_A = n r_B
the distance from the each corner is
r_B = L₂
r_A =
we substitute
\sqrt{L_1^2 + L_2^2} = n L₂
L₁² + L₂² = n² L₂²
L₁² = (n²-1) L₂²
<h2>
Answer:</h2><h3>
<em><u>Alexander Graham Bell</u></em></h3><h2>
Explanation:</h2>
Alexander Graham Bell is often credited as the inventor of the telephone since he was awarded the first successful patent.
The force of attraction between two objects can be illustrated using Newton's Law of Universal Gravitation.
The relation between the different parameters is shown in the attached image.
Now, from the relation, we can deduce that the force between the two objects is directly proportional to the masses of the two objects.
This means that, if the mass of one object is doubled, then the force between the two objects will also be doubled.