Answer:
The given vector can be represented in unit vector as

The magnitude of any vector
is given by

Applying values we get

We know that positive x axis in vertorial form is represented as

taking dot product of both the vector's we get

the force in each of the chains holding the trapeze bar is D. 330 N
Her weight has to be divided evenly so, divide 660/2= 330 N
Answer:
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Explanation:
Given;
Initial length L1 = 1.2m
Initial temperature T1 = 27°C
Final temperature T2 = 0.0°C
Linear expansion coefficient of brass x = 1.9 × 10^-5 /°C
The change i length ∆L;
∆L = L2 - L1
L2 = L1 + ∆L ...........1
∆L = xL1(∆T)
∆L = xL1(T2 - T1) ......2
Substituting the given values into equation 2;
∆L = 1.9 × 10^-5 /°C × 1.2m × (0 - 27)
∆L = 1.9 × 10^-5 /°C × 1.2m × (- 27)
∆L = -6.156 × 10^-4 m
From equation 1;
L2 = L1 + ∆L
Substituting the values;
L2 = 1.2 m + (- 6.156 × 10^-4 m)
L2 = 1.2 m - 6.156 × 10^-4 m
L2 = 1.1993844 m
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Answer:
He traveled 9km
Explanation:
To do this problem you need to use the equation which is Speed= distance/time and this problem gives you the speed which is 18 km/h and it gives you the time 1/2 hour so you write the equation 18= d/ 1/2 which his distance is 9km
Heat can be transferred from one place to another by three methods:
conduction in solids,
convection of fluids (liquids or gases),
radiation through anything that will allow radiation to pass.