Answer:
Option C. The same number of energy levels.
Explanation:
From the diagram given above, element (i) belong to group 2 while element (ii) belong to group 6.
Also, both element i and ii belong to the same period (i.e period 4). This simply means that both element i and ii have the same number of energy levels.
NOTE: Elements in the same period have the same number of shells of electrons which simply means they have the same energy levels.
Answer:
c. 0.1 M Ga₂(SO₄)₃
Explanation:
The boiling point increasing of a solvent due the addition of a solute follows the formula:
ΔT = K*m*i
<em>Where K is boiling point increasing constant (Depends of the solute), m is molality = molarity when solvent is water, and i is Van't Hoff factor.</em>
<em />
That means the option with the higher m*i will be the solution with the highest boiling point:
a. NaCl has i = 2 (NaCl dissociates in Na⁺ and Cl⁻ ions).
m* i = 0.20*2 = 0.4
b. CaCl₂; i = 3. 3 ions.
m*i= 0.10M * 3 = 0.3
c. Ga₂(SO₄)₃ dissolves in 5 ions. i = 5
m*i = 0.10M*55 = 0.5
d. C₆H₁₂O₆ has i = 1:
m*i = 0.2M*1 = 0.2
The solution with highest boiling point is:
<h3>
c. 0.1 M Ga₂(SO₄)₃</h3>
Answer:
Use the Bromotriflouride catalyst, BF₃
Explanation:
The BF₃ is most likely to yield less desired side products. The effect lies in the reaction mechanism.
BF₃ is a Lewis acid. Its role is to promote the ionization of the HF. This is achieved through the electrophilic mechanism. The reaction mechanism is as follows:
2 - methylpropene + H-F-BF₃ → H-F + H₃C + benzene
butylbenzene + F-BF₃ → tert-butylbenzene + H-F + BF₃ (regenerated catalyst)
The order of the answers are as follows:
B
C
D
A