Answer:
Kc = 8.05x10⁻³
Explanation:
This is the equilibrium:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Initially 0.0733
React 0.0733α α/2 3/2α
Eq 0.0733 - 0.0733α α/2 0.103
We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.
Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.
3/2α = 0.103
α = 0.103 . 2/3 ⇒ 0.0686
So, concentration in equilibrium are
NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682
N₂ = 0.0686/2 = 0.0343
So this moles, are in a volume of 1L, so they are molar concentrations.
Let's make Kc expression:
Kc= [N₂] . [H₂]³ / [NH₃]²
Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³
Explanation:
cant answer without context
<span>So the oxidizing agent will receive electrons from the reducing agent and the oxidation agent will take electrons from the reducing agent.</span>
Answer:
[O2(g)][SO2(g)]^2/[SO3(g)]^2
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ