1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
8

Which properties of a lava lamp are important to remember when modeling convection?

Physics
1 answer:
Luba_88 [7]3 years ago
5 0
Important thing when making a lava lamp are the two liquids with different density so that it would not mix and that it would expand when heated. The movement of the orange liquid is called convection. if you will not heat the orange one, it till just stay on the stop and not go under tha water.
You might be interested in
A 40 kg girl and an 8.4 kg sled are on the surface of a frozen lake, 15 m apart. By means of a rope, the girl exerts a 5.2 N for
stealth61 [152]

Answer:

(a) a_s=0.62\frac{m}{s^2}

(b) a_s=0.13\frac{m}{s^2}

(c) x_f=2.6m

Explanation:

(a) According to Newton's second law, the acceleration of a body is directly proportional to the force exerted on it and inversely proportional to it's mass.

a_s=\frac{F}{m_s}\\a_s=\frac{5.2N}{8.4kg}\\a_s=0.62\frac{m}{s^2}

(b) According to Newton's third law, the force that the sled exerts on the girl is equal in magnitude but opposite in the direction of the force that the girl exerts on the sled:

a_g=\frac{F}{m_g}\\a_g=\frac{5.2N}{40kg}\\a_g=0.13\frac{m}{s^2}

(c) Using the kinematics equation:

x_f=x_0+v_0t \pm  \frac{at^2}{2}

For the girl, we have x_0=0 and v_0=0. So:

x_f_g=\frac{a_gt^2}{2}(1)

For the sled, we have v_0=0. So:

x_f_s=x_0_s-\frac{a_st^2}{2}(2)

When they meet, the final positions are the same. So, equaling (1) and (2) and solving for t:

x_0_s-\frac{a_st^2}{2}=\frac{a_st^2}{2}\\t^2(a_g+a_s)=2x_0_s\\t=\sqrt{\frac{2x_s_0}{a_g+a_s}}\\t=\sqrt{\frac{2(15m)}{0.13\frac{m}{s^2}+0.62\frac{m}{s^2}}}\\t=6.32s

Now, we solve (1) for x_f_g

x_f_g=\frac{0.13\frac{m}{s^2}(6.32s)^2}{2}\\x_f_g=2.6m\\x_f=2.6m

5 0
3 years ago
When exercising in the heat, which of the following hydration strategies is best for temperature regulation during an event (e.g
Olegator [25]

Answer:

Your question was incomplete so here is the complete question and answer.

Q. When exercising in the heat, which of the following hydration strategies is best for temperature regulation during an event (e.g., 10K race)

a) plain water

b) 5-7 percent glucose solution

c) Glucose polymer solution of 6-8 percent

d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.

Ans. d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.

Explanation:

Temperature Regulation is an important phenomenon for the person exposed to extreme hot conditions or weather. Exercising in hot conditions increase the body temperature. Greater and intense exercise, greater the production of heat. Then the heat dissipation takes place in the form of excessive sweating which results in dehydration. That was just the brief overview of temperature regulation. Above mentioned techniques are equally good hydration techniques so there is no difference at all. You can have a plain water or glucose solutions of above mentioned percentages.

3 0
3 years ago
A pencil sharpener has a handle with a radius of 1.5 cm. The sharpening mechanism has a radius of 0.5 cm. What is the IMA of the
abruzzese [7]
1.5 / 0.5 = 3 I believe this is the right answer
8 0
3 years ago
A 77.0 kg woman slides down a 42.6 m long waterslide inclined at 42.3. at the bottom, she is moving 20.3 m/s.how much work did f
zhuklara [117]

Answer:

5.791244495 KNm

Explanation:

The height h is given by, h=42.6sin42.3^{o}

Potential energy, PE is given by

PE=mgh where m is mass of the woman, g is acceleration due to gravity whose value is taken as 9.81 m/s^{2} and h is already given hence substituting 77 Kg for m we obtain

PE=77*9.81*42.6sin42.3^{o}=21656.7095 Nm

PE=21.6567095 KNm

We also know that Kinetic energy is given by0.5mv^{2} where v is the velocity and substituting v for 20.3 we obtain

KE=0.5*77*20.3^{2}=15865.465 Nm

KE=15.865465 KNm

Friction work is the difference between PE and KE hence

Friction work=21.6567095 KNm-15865.465 Nm=5.791244495 KNm

8 0
3 years ago
A point charge q1=2.0μC is located on the positive y axis at y=0.30m, and an identical charge q2 is at the origin. Find the magn
dalvyx [7]

Answer:

(A) 0.279N at angle 38.02°

(B) 0.701N

(C) 14.19°

Explanation:

(A) The net force on q3 is given as:

F = Fxi + Fyj

Fx is the x component of the force

Fy is the y component of the force

Fx = -F(1, 3)cos(90 - x) + F(2, 3)cos0

Fy = -F(2, 3)cosx - F(2, 3)cos90 = -F(2, 3)cosx

First let us find y and angle x from the diagram.

Using Pythagoras theorem,

y² = 0.3² + 0.4²

y² = 0.25

y = 0.5m

Using SOHCAHTOA to find x,

sinx = 0.4/0.5

x = 53.13°

Electrostatic force, F is given as:

F = kqQ/r²

Where k = Coulumbs constant

F(1,3) = (k*q1*q3) / r²

F(1, 3) = (9 * 10^9 * 2.0 * 10^(-6) * 4.0 * 10^(-6)) / (0.5²)

F(1, 3) = 0.288N

F(2,3) = (k*q2*q3) / r²

F(2, 3) = (9 * 10^9 * 2.0 * 10^(-6) * 4.0 * 10^(-6)) / (0.4²)

F(2, 3) = 0.45N

Therefore,

Fx = -0.288cos36.87 + 0.45

Fx = 0.22N

Fy = 0.288cos53.13

Fy = 0.172N

=> F = 0.22i + 0.172j

The magnitude of the force will be

F(mag) = √(0.22² + 0.172²)

F(mag) = 0.279N

The direction of the force makes will be

tanθ = Fy/Fx

tanθ = 0.172/0.22 = 0.781

θ = 38.02° to the x axis.

(B) q2 = - 2.0 * 10^(-6)

This implies that:

F(2,3) = (k*q2*q3) / r²

F(2, 3) = (9 * 10^9 * -2.0 * 10^(-6) * 4.0 * 10^(-6)) / (0.4²)

F(2, 3) = -0.45N

Therefore,

Fx = -0.288cos36.87 - 0.45

Fx = -0.68N

Fy = 0.172N

=> F = - 0.68i + 0.172j

The magnitude of the force will be

F(mag) = √((-0.68)² + 0.172²)

F(mag) = 0.701N

(C) The direction of the force makes will be

tanθ = 0.172/0.68

θ = 14.19° to the x axis

4 0
3 years ago
Read 2 more answers
Other questions:
  • A 3 mm inside diameter tube is placed in a fluid with a surface tension of 600 mN/m and density of 3.7 g/cm3. The contact angle
    13·1 answer
  • What were the models of ancient greek atoms ?
    13·1 answer
  • The impedance of an inductor zind is determined to be 147 ohms at 2000 hz and its dc resistance rl is 25 ohms. what would be the
    10·1 answer
  • What is the kinetic theory of matter? How does it relate to the motion of molecules?
    10·1 answer
  • An inventor develops a stationary cycling device by which an individual, while pedaling, can convert all of the energy expended
    7·1 answer
  • - Calculate the efficiency of the human body if a person eats a hamburger containing 7.4822 kJ of
    10·2 answers
  • Indicate whether a change in the value of each of the following determinants of demand leads to a movement along the demand curv
    11·1 answer
  • Rocket can propel itself in a vacuum. True or false
    11·1 answer
  • If a body starts moving from rest its<br>initial velocity is<br>ų <br>V<br>zero<br>m/s​
    6·1 answer
  • What’s better csp or pv ?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!