There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
How would you describe the behavior of particles in a solid?
During the internal examination, the pathologist drains the intestines, removes any undigested food and feces, and examines the contents of the stomach. This examination could give the pathologist clues of the time of death, and the location of death. The process of digesting and defecation vary from person to person, the entire process is generally considered to take approximately 40 hours in adults
Power=Work/Time
The work done is the energy required to lift the box, fighting the force of gravity. So, Work=Potential energy of the box at 10 meters.
W=PE=mgh=(60)(9.8)(10)=5880J
Finally,
P=W/T=(5880)/(5)=1176Watt
So the answer is 1176 Watts
Answer:
To convert inches to centimeters, use an easy formula and multiply the length by the conversion ratio.
Since one inch is equal to 2.54 centimeters, this is the inches to cm formula to conver
Explanation: