Turbine transformer generator⇆
All forces must add up to zero. See pictures below.
Answer:
The tension in the string is
.
Explanation:
For a string with tension
and linear density
carrying a transverse wave at speed
it is true that

solving for
we get:

Now, the transverse wave covers the distance of 7.4mm in 0.88s, which means it's speed is

And it's linear density (mass per unit length) is

Therefore, the tension in the cord is

or in micro newtons

<span>A) x = 41t
The classic equation for distance is velocity multiplied by time. And unfortunately, all of your available options have the form of that equation. In fact, the only difference between any of the equations is what looks to be velocity. And in order to solve the problem initially, you need to divide the velocity vector into a vertical velocity vector and a horizontal velocity vector. And the horizontal velocity vector is simply the cosine of the angle multiplied by the total velocity. So
H = 120*cos(70) = 120*0.34202 = 41.04242
So the horizontal velocity is about 41 m/s. Looking at the available options, only "A" even comes close.</span>
Answer:
well the answers are 180 and 240 obviously
Explanation: