Answer:
Acceleration
Explanation:
can you mark me brainlies
So, if an object travels in a curved path, it changes velocity, and, thus, accelerates. This acceleration must be tied to a force. ... Therefore, whenever an object travels in a curved path, there must be an unbalanced force acting upon it. It is important to understand that all this may occur without a change in speed.t
Explanation:
The third class lever cannot magnify our force because in third class lever the effort it between the load and the fulcrum. Also, in this type of lever no matter where the force is applied, it is always greater than the force of load. Hence, That type of lever cannot magnify our force.
Electro waves in a vacuum air is deals with this and electricity when the air and the electricity it makes electro magnets.
We need to see what forces act on the box:
In the x direction:
Fh-Ff-Gsinα=ma, where Fh is the horizontal force that is pulling the box up the incline, Ff is the force of friction, Gsinα is the horizontal component of the gravitational force, m is mass of the box and a is the acceleration of the box.
In the y direction:
N-Gcosα = 0, where N is the force of the ramp and Gcosα is the vertical component of the gravitational force.
From N-Gcosα=0 we get:
N=Gcosα, we will need this for the force of friction.
Now to solve for Fh:
Fh=ma + Ff + Gsinα,
Ff=μN=μGcosα, this is the friction force where μ is the coefficient of friction. We put that into the equation for Fh.
G=mg, where m is the mass of the box and g=9.81 m/s²
Fh=ma + μmgcosα+mgsinα
Now we plug in the numbers and get:
Fh=6*3.6 + 0.3*6*9.81*0.8 + 6*9.81*0.6 = 21.6 + 14.1 + 35.3 = 71 N
The horizontal force for pulling the body up the ramp needs to be Fh=71 N.