It is Potential energy it's at rest
1. I think you should compare diagrams of moon phases from the textbook to diagrams of moon phases online. Because if you pick D it will take to long and C will help you out whith 3 different things to look at.
2. The moon changes in appearances from the perspective of people on earth because it's revolving around the planet and the earth is revolving around the sun, so A. Hoped this helped.
Based on its position in the periodic table, you can predict how many electrons it has, how many valence electrons, how many levels of electrons, and its atomic number and mass.
v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"] ;
and solve for "v".
______________________________________________________
Explanation:
_____________________________________________________
The formula is: KE = (½) * (m) * (v²) ;
_____________________________________
"Kinetic energy" = (½) * (mass) * (velocity , "squared")
________________________________________________
Note: Velocity is similar to speed, in that velocity means "speed and direction"; however, if you "square" a negative number, you will get a "positive"; since: a "negative" multiplied by a "negative" equals a "positive".
____________________________________________
So, we have the formula:
___________________________________
KE = (½) * (m) * (v²) ; to solve for "(v)" ; velocity, which is very similar to the "speed";
___________________________________________________
we arrange the formula ;
__________________________________________________
(KE) = (½) * (m) * (v²) ; ↔ (½)*(m)* (v²) = (KE) ;
___________________________________________________
→ We have: (½)*(m)* (v²) = (KE) ; we isolate, "m" (mass) on one side of the equation:
______________________________________________________
→ We divide each side of the equation by: "[(½)* (m)]" ;
___________________________________________________
→ [ (½)*(m)*(v²) ] / [(½)* (m)] = (KE) / [(½)* (m)]<span> ;
</span>______________________________________________________
to get:
______________________________________________________
→ v² = (KE) / [(½)* (m)]
→ v² = 2 KE / m
_______________________________________________________
Take the "square root" of each side of the equation ;
_______________________________________________________
→ √ (v²) = √ { 2*(KE) ] / m }
________________________________________________________
→ v = √ { 2*(KE) ] / m } ;
Now, plug in the known values for "KE" ["kinetic energy"] and "m" ["mass"];
and solve for "v".
______________________________________________________
Answer
Given,
Energy absorbed, 
Energy expels,
Temperature of cold reservoir, T = 27°C
a) Efficiency of engine



b) Work done by the engine



c) Power output
t = 0.296 s


