<span>x=<span>−<span><span>1<span> or </span></span>x</span></span></span>=<span>−<span>3 i think lol</span></span>
Answer:1.5,-1.5
Step-by-step explanation:
I just answered it
Answer:
Step-by-step explanation:
If you call "5x-2x^2+1" an "equation," then you must equate 5x-2x^2+1 to 0:
5x-2x^2+1 = 0
This is a quadratic equation. Rearranging the terms in descending order by powers of x, we get:
-2x^2 + 5x + 1 = 0. Here the coefficients are a = -2, b = 5 and c = 1.
Use the quadratic formula to solve for x:
First find the discriminant, b^2 - 4ac: 25 - 4(-2)(1) = 25 + 8 = 33
Because the discriminant is positive, the roots of this quadratic are real and unequal.
-b ± √(discriminant)
Applying the quadratic formula x = --------------------------------
2a
we get:
-5 ± √33 -5 + √33
x = ----------------- = --------------------- and
2(-2) -4
-5 - √33
---------------
-4
Jay's claim is false. They would have $156.8 left which is 56% of their original combined total.