Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Answer:
1. Torque → F. Study of forces
2. C.O.G → D. Point of action of weight.
3. Plumb line → A. Line of C.O.G
Answer:
exponential
Explanation:
type of function that describes the amplitude of damped oscillatory motion is exponential because as we know that here function is
y = A ×
× cos(ωt + ∅ ) ..................................... ( 1 )
here function A ×
is amplitude
as per equation ( 1 )it is exponential
so that we can say that amplitude of damped oscillatory motion is exponential
Atomic number is equal to the number of protons and electrons
Atomic mass - protons = neutrons
protons + neutrons = atomic mass
I hope this helps
heat released Q = 749 joules
heat of fusion of silver L = 109 J/g
Here phase of silver is changing from liquid to solid
so temperature will remain same
all heat will be released due to its phase change
and in this case we use Q=mL
where m is the mass of silver in gram
Q= mL
749 = m * 109
m = 749/109
m = 6.87 gram