Answer:
The mass will accelerate. Balanced Forces: When forces are in balance, acceleration is zero. Velocity is constant and there is no net or unbalanced force. A plane will fly at constant velocity if the acceleration is zero.
Explanation:
Answer:
See explanation
Explanation:
We have to convert to angular velocity in rads-1 as follows;
Angular velocity in rad/s = 2π/60 × 1900 rpm = 199 rad/s
Given that
angular velocity =angle turned /time taken
Time taken = angle turned/angular velocity
Converting 35° to radians we have;
35 × π/180 = 0.61 radians
Time taken = 0.61 radians/199 rad/s
Time taken = 0.0031 seconds
There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
Here is your answer:
First find the notations:
2×10^-3
=0002
And...
2.5×10^4=25000
Then divide:
0002÷25000=8E-9
Your answer:
=8 x 10-8
Answer:
Explanation:
Answer:
Explanation:
Given that,
System of two particle
Ball A has mass
Ma = m
Ball A is moving to the right (positive x axis) with velocity of
Va = 2v •i
Ball B has a mass
Mb = 3m
Ball B is moving to left (negative x axis) with a velocity of
Vb = -v •i
Velocity of centre of mass Vcm?
Velocity of centre of mass can be calculated using
Vcm = 1/M ΣMi•Vi
Where M is sum of mass
M = M1 + M2 + M3 +...
Therefore,
Vcm=[1/(Ma + Mb)] × (Ma•Va +Mb•Vb
Rearranging for better understanding
Vcm = (Ma•Va + Mb•Vb) / ( Ma + Mb)
Vcm = (m•2v + 3m•-v) / (m + 3m)
Vcm = (2mv — 3mv) / 4m
Vcm = —mv / 4m
Vcm = —v / 4
Vcm = —¼V •i