<span>The "p" in pH and pOH stands for "negative logarithm of" and is used to make it easier to work with extremely large or small values. pH and pOH are only meaningful when applied to aqueous (water-based) solutions. </span>
Answer:
The answer to your question is 0.269 g of Pb
Explanation:
Data
Lead solution = 0.000013 M
Volume = 100 L
mass = 0.269 g
atomic mass Pb = 207.2 g
Chemical reaction
2Pb(s) + O₂(aq) + 4H⁺(aq) → 2H₂O(l) + 2Pb₂⁺(aq)
Process
1.- Calculate the mass of Pb in solution
Formula
Molarity = 
Solve for number of moles
Number of moles = Volume x Molarity
Substitution
Number of moles = 100 x 0.000013
Number of moles = 0.0013
2.- Calculate the mass of Pb formed.
207.2 g of Pb ----------------- 1 mol
x g ----------------- 0.0013 moles
x = (0.0013 x 207.2) / 1
x = 0.269 g of Pb
Answer:
5 L
Explanation:
Use Charles law and rearrange formula
Change C to K
- Hope that helped! Please let me know if you need further explanation.
This is an aplication of Le Chatelier Principle. So, if you need further details about the theory behind the answer, search for this subject.
Here is the answer and the explanation.
You can realize that 1 mol of reactant produce 2 moles of products, which means that the trend of the reaction is to increase the volume (at constant pressure) or to increase the pressure (at constant volume). If you realease the pressure by increasing the volume, Le Chaelier principle permit you to predict a displacement of the equilibrium to the right (to the products). This is, because the equilibrium will try to restore (increase) the pressure by producing more molecules.
So, the answer is the option B. There will be a shift toward the products.
Arrhenius is a substance that dissociates in water to produce hydrogen ions (H+) and there is a clear answer which coincides with this definition. The correct answer is definitely b. a substance that increases the concentration of hydronium ions when dissolved in water.