I think it’s the third option but I’m not entirely sure
Answer:
a mixture of two these
Explanation:
The number of isomeric monochlorides depends on the structure and number of equivalent hydrogen atoms in each isomer of pentane.
n-pentane has three different kinds of equivalent hydrogen atoms leading to three isomeric monochlorides formed.
Isopentane has four different types of equivalent hydrogen atoms hence four isomeric monochlorides are formed.
Lastly, neopentane has only one type of equivalent hydrogen atoms that yields one mono chlorination product.
Hence the cylinder must contain a mixture of isopentane and neopentane which yields four and one isomeric monochlorides giving a total of five identifiable monochloride products as stated in the question.
Answer:
The pressure inside the container will be 3.3 atmospheres
Explanation:
The relationship between the temperature and pressure of a gas occupying a fixed volume is given by Gay-Lussac's law which states that the pressure of a given amount of gas is directly proportional to its temperature on the kelvin scale when the volume is kept constant.
Mathematically, it expressed as: P₁/T₁ = P₂/T₂
where P₁ is initial pressure, T₁ is initial temperature, P₂ is final pressure, T₂ is final temperature.
The above expression shows that the ratio of the pressure and temperature is always constant.
In the given question, the gas in the can attains the temperature of its environment.
P₁ = 3 atm,
T₁ = 25 °C = (273.15 + 25) K = 298.15 K,
P₂ = ?
T₂ = (55 °C = 273.15 + 55) K = 328.15 K
Substituting the values in the equation
3/298.15 = P₂/328.15
P₂ = 3 × 328.15/298.15
P₂ = 3.3 atm
Therefore, the pressure inside the container will be 3.3 atmospheres