The temperature is -8 F
Answer D
Answer:
1.327 g Ag₂CrO₄
Explanation:
The reaction that takes place is:
- 2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq)
First we need to <em>identify the limiting reactant</em>:
We have:
- 0.20 M * 50.0 mL = 10 mmol of AgNO₃
- 0.10 M * 40.0 mL = 4 mmol of K₂CrO₄
If 4 mmol of K₂CrO₄ were to react completely, it would require (4*2) 8 mmol of AgNO₃. There's more than 8 mmol of AgNO₃ so AgNO₃ is the excess reactant. <em><u>That makes K₂CrO₄ the limiting reactant</u></em>.
Now we <u>calculate the mass of Ag₂CrO₄ formed</u>, using the <em>limiting reactant</em>:
- 4 mmol K₂CrO₄ *
= 1326.92 mg Ag₂CrO₄
- 1326.92 mg / 1000 = 1.327 g Ag₂CrO₄
Kelvin (K) is the only scale that has a numeral value assigned to absolute zero.
Answer:
Lewis structure of polyatomic formate anion.
Explanation:
To draw Lewis structure for any chemical species,
1)Count the total number of valence electrons present in it.
This can be obtained by adding valence electrons of each constituent atom.
2)Arrange those valence electrons in such a way that each atom should attain eight electrons around it to satisfy octet theory.
The structure of formate ion and its Lewis structure are shown below:
HCOO- is the formate ion.
It has total:
1+4+6+6+1 = 18 valence electrons.
Since, hydrogen has one, carbon has four and oxygen has six valence electrons and the charge of the anion is one.
Arrange this 18 electrons in such a way that each atom should get 8 electrons around it.
Resonance structures of formate ion: