Answer:
absorption and insolation.
Explanation:
Answer:
a-1 Graph is attached. The relation is linear.
a-2 The corresponding height for 68 kPa Pressure is 7.54 m
a-3 The corresponding weight for 68 kPa Pressure is 1394726kg
b The original height of the column is 5.98 m
Explanation:
Part a
a-1
The graph is attached with the solution. The relation is linear as indicated by the line.
a-2
By the equation

Here
- P is the pressure which is given as 68 kPa.
- ρ is the density of the oil whose SG is 0.92. It is calculated as

- g is the gravitational constant whose value is 9.8 m/s^2
- h is the height which is to be calculated

So the height of column is 7.54m
a-3
By the relation of volume and density

Here
- ρ is the density of the oil which is 920 kg/m^3
- V is the volume of cylinder with diameter 16m calculated as follows

Mass is given as

So the mass of oil leading to 68kPa is 1394726kg
Part b
Pressure variation is given as

Now corrected pressure is as

Finding the value of height for this corrected pressure as

The original height of column is 5.98m
Gravitational potential energy can be described as m*g*h (mass times gravity times height).
Originally,
15kg * 9.8m/s^2 *0.3 m = 44.1 kg*m^2/s^2 = 44.1 Joules.
After it is moved to a 1m shelf:
15kg * 9.8m/s * 1 = 147 kg*m^2/s^2= 147 Joules.
To find how much energy was added, we subtract final energy from initial energy:
147 J - 44.1 J = 102.9 Joules.
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s